
图神经网络
图神经网络详细介绍,包括 RecGNN, ConvGNN, GAE, STGNN
Jay_Tang
小唐的 ML & NLP 进阶之路
展开
-
Connecting the Dots: Document-level Neural Relation Extraction with Edge-oriented Graphs 关系抽取论文总结
文章目录往期文章目录链接Relation Extraction (RE)document-level REIntuitionContributionOverview of Proposed ModelProposed ModelSentence Encoding LayerGraph construction LayerNode ConstructionEdge ConstructionInference LayerFirst StepSecond StepClassification LayerResul原创 2020-12-31 08:47:50 · 1233 阅读 · 0 评论 -
The More You Know: Using Knowledge Graphs for Image Classification 论文总结
文章目录往期文章链接目录OverviewIntuitionPrevious WorkMajor ContributionGraph Search Neural Network (GSNN)GSNN ExplanationThree networksDiagram visualizationAdvantageIncorporate the graph network into an image pipelineDatasetConclusion往期文章链接目录往期文章链接目录OverviewThis p原创 2020-09-02 08:54:10 · 2870 阅读 · 2 评论 -
Graph Convolutional Neural Network - Spectral Convolution 图卷积神经网络 — 频域卷积详解
Fourier TransformVirtually everything in the world can be described via a waveform - a function of time, space or some other variable. For instance, sound waves, the price of a stock, etc. The Fourier Transform gives us a unique and powerful way of viewin原创 2020-08-24 08:49:54 · 2795 阅读 · 4 评论 -
Graph Convolutional Neural Network - Spatial Convolution 图卷积神经网络 — 空域卷积详解
Convolutional graph neural networks (ConvGNNs)Convolutional graph neural networks (ConvGNNs) generalize the operation of convolution from grid data to graph data. The main idea is to generate a node vvv’s representation byaggregating its own features xv\原创 2020-08-20 08:40:58 · 5667 阅读 · 1 评论 -
往期文章集合目录
Logistic Regression, L1, L2 regularization, Gradient/Coordinate descent 详细MLE v.s. MAP ~ L1, L2 Math Derivation 详细XGBoost math Derivation 通俗易懂的详细推导Introduction to Convex Optimization Basic Concept...原创 2020-04-14 00:44:41 · 1733 阅读 · 0 评论 -
Introduction to Graph Neural Network (GNN) 图神经网络入门详解
文章目录往期文章链接目录NoteBackground and IntuitionIntro to Graph Neural NetworksGNNs FrameworkDefinitionRecurrent graph neural networks (RecGNNs)Introduction to RecGNNsBanach's Fixed Point TheoremRecGNNs v.s. RNNsLimitation of RecGNNsGated Graph Neural Networks (GGN原创 2020-08-17 08:37:40 · 3795 阅读 · 0 评论