在数据存储和非结构化数据管理领域,过去 12 个月发生了很大变化。在不确定的经济时期,随着成本上升和 IT 预算压力增加,云存储战略受到关注,生成式 AI 正在创造新的数据存储和治理要求,数据迁移越来越复杂。但是,在数据中心整合时代,IT 组织面临着控制成本和提供更大数据价值的巨大压力。如何处理这一切?以下是针对 IT 组织和数据存储团队的一些预测,首先是 AI 和非结构化数据管理。
人工智能将使非结构化数据发挥更大的价值
非结构化数据非常庞大,直到今天,由于搜索、分类、细分和迁移到 AI 引擎和分析工具既困难又昂贵,非结构化数据仍无法完全使用。随着人工智能工具和服务的发展,让许多用户(而不仅仅是财力雄厚的大型组织)能够更好地使用非结构化数据,且人们越来越需要利用这些数据来创造新的业务价值。
但挑战在于:想要向 AI 发送数据的研究人员和数据科学家没有简单的方法来安全地做到这一点。它需要编写手动脚本,这需要数天或数周的工作。另外,人工智能和机器学习技术仍然不太准确,并引入了偏见和错误的结果。
然而,我们仍然预测对解决方案的需求将会增加,这些解决方案可以创建一个工作流程,人工智能可以快速找到所需的数据,丰富数据并验证结果。工作流程可能包括首先使用人工智能工具扫描云数据湖或数据中心中的数据,以找到项目所需的数据类型。
然后,AI 通过扫描文件内容和标记文件(例如“包含用于诊断随访