伪随机置换与嵌入式实时加密算法研究
1. 伪随机置换相关研究
1.1 概率计算与不等式推导
在伪随机置换的研究中,有如下概率计算和推导。首先定义了 (p_{\psi}):
[p_{\psi} = \sum_{(v,V )\in(v,V ) {one}} \frac{# { (h_1, p, h_5) | (h_1, p, h_5) \text{ 满足 } (5) }}{(#H {1n})^2(2n)!}]
通过引理 3.2 可得:
[p_{\psi} \geq \sum_{(v,V )\in(v,V ) {one}} \frac{(2n - 2m_0 - m_1)!}{(2n)!} \left( 1 - 2\epsilon \cdot \frac{m_0(m_0 - 1)}{2n} - \frac{4m_0m_1}{2n} - \frac{2m_0^2}{2n} \right)]
进一步推导得到:
[p {\psi} \geq p_R \left( 1 - 2\epsilon \cdot \frac{m_0(m_0 - 1)}{2n} - \frac{4m_0m_1}{2n} - \frac{2m_0^2}{2n} \right) \geq p_R - 2\epsilon \cdot \frac{m_0(m_0 - 1)}{2n} - \frac{4m_0m_1}{2n} - \frac{2m_0^2}{2n} \geq p_R - 2\epsilon \cdot \frac{m(m - 1)}{2n} - \frac{6m^2}{2n}]
同理对 (1 - p_{\psi}) 和 (1 -