YOLOv9改进策略 | 添加注意力篇 | 利用YOLO-Face提出的SEAM注意力机制优化物体遮挡检测(附代码 + 修改教程)

本文介绍了YOLOv9的改进策略,特别是通过YOLO-Face提出的SEAM(Spatially Enhanced Attention Module)模块和排斥损失函数来改善物体遮挡检测。SEAM通过增强未遮挡部分的响应来补偿遮挡损失,同时结合深度可分离卷积和残差连接。排斥损失则分为RepGT和RepBox两部分,防止预测框间的重叠。文章提供代码修改教程和yaml文件,适合初学者实践。

 一、本文介绍

本文给大家带来的改进机制是由YOLO-Face提出能够改善物体遮挡检测的注意力机制SEAM,SEAM(Spatially Enhanced Attention Module)注意力网络模块旨在补偿被遮挡面部的响应损失,通过增强未遮挡面部的响应来实现这一目标,其希望通过学习遮挡面和未遮挡面之间的关系来改善遮挡情况下的损失从而达到改善物体遮挡检测的效果,本文将通过介绍其主要原理后,提供该机制的代码和修改教程,并附上运行的yaml文件和运行代码,小白也可轻松上手。。

欢迎大家订阅我的专栏一起学习YOLO! 

 专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 


目录

 一、本文介绍

二、原理介绍

2.1 遮挡改进

2.2 SEAM模块

2.3 排斥损失 

三、核心代码

四、添加教程

 4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、SEAM的yaml文件和运行记录

5.1 SEAM的yaml文件

5.2 MultiSEAM的yaml文件

5.3 训练过程截图 

五、本文总结


二、原理介绍

2.1 遮挡改进

本文重点介绍遮挡改进,其主要体现在两个方面:注意力网络模块(SEAM)排斥损失(Repulsion Loss)

1. SEAM模块:SEAM(Spatially Enhanced Attention Module)注意力网络模块旨在补偿被遮挡面部的响应损失,通过增强未遮挡面部的响应来实现这一目标。SEAM模块通过深度可分离卷积和残差连接的组合来实现,其中深度可分离卷积按通道进行操作,虽然可以学习不同通道的重要性并减少参数量,但忽略了通道间的信息关系。为了弥补这一损失,不同深度卷积的输出通过点对点(1x1)卷积组合。然后使用两层全连接网络融合每个通道的信息,以增强所有通道之间的联系。这种模型希望通过学习遮挡面和未遮挡面之间的关系,来弥补遮挡情况下的损失。

2. 排斥损失(Repulsion Loss):一种设计来处理面部遮挡问题的损失函数。具体来说,排斥损失被分为两部分:RepGT和RepBox。RepGT的功能是使当前的边界框尽可能远离周围的真实边界框,而RepBox的目的是使预测框尽可能远离周围的预测框,从而减少它们之间的IOU,以避免某个预测框被NMS抑制,从而属于两个面部。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值