【RT-DETR有效改进】轻量级下采样方法ContextGuided(参数量下降700W,轻量又涨点)

本文详细介绍了如何使用ContextGuidedBlock_Down改进RT-DETR,该模块源于CGNet,通过捕获局部、周围和全局上下文信息提高目标检测准确性。文章提供模块原理、核心代码、逐步添加教程及yaml配置文件,适用于ResNet和HGNetV2主干。实验证明,这种轻量级方法能有效减少参数量,提升性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

👑欢迎大家订阅本专栏,一起学习RT-DETR👑    

 一、本文介绍

本文给大家带来的是改进机制是一种替换Conv的模块Context Guided Block (CG block) ,其是在CGNet论文中提出的一种模块,其基本原理是模拟人类视觉系统依赖上下文信息来理解场景。CG block 用于捕获局部特征、周围上下文和全局上下文,并将这些信息融合起来以提高准确性。本文改进是基于ResNet18、ResNet34、ResNet50、ResNet101,文章中均以提供,本专栏的改进内容全网独一份深度改进RT-DETR非那种无效Neck部分改进,同时本文的改进也支持主干上的即插即用,本文内容也支持PP-HGNetV2版本的修改。

专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR  

目录

 一、本文介绍

二、ContextGuidedBlock_Down模块原理

2.1  ContextGuidedBlock_Down的基本原理

2.2  局部特征提取器

2.3  周围上下文提取器

2.4  联合特征提取器

2.5  全局上下文提取器

三、ContextGuided的核心代码

四、 手把手教你添加ContextGuided(注意看此处)

4.1 修改Basicclock/Bottleneck的教程

4.1.1 修改一

4.1.2 修改二 

4.2 修改主干上即插即用的教程

4.2.1 修改一(如果修改了4.1教程此步无需修改)

4.2.2 修改二 

4.2.3 修改三 

4.2.4 修改四 

五、ContextGuided的yaml文件

5.1 替换ResNet的yaml文件1(ResNet18版本)

5.2 替换ResNet的yaml文件1(ResNet50版本)

5.3 即插即用的yaml文件(HGNetV2版本)

六、成功运行记录 

6.1 ResNet18运行成功记录截图

​6.2 ResNet50运行成功记录截图

6.3 HGNetv2运行成功记录截图

七、全文总结 


二、ContextGuidedBlock_Down模块原理

论文地址:官方论文地址

代码地址:官方代码地址


2.1  ContextGuidedBlock_Down的基本原理

Context Guided Block (CG block) 在CGNet中的基本原理是模拟人类视觉系统依赖上下文信息来理解场景。CG block 用于捕获局部特征、周围上下文和全局上下文,并将这些信息融合起来以提高语义分割的准确性。这一模块包含以下部分:

1. 局部特征提取器(floc): 使用标准卷积层学习局部特征。
2. 周围上下文提取器(fsur): 使用空洞/膨胀卷积层来学习更大接收野的周围上下文。
3. 联合特征提取器(fjoi): 通过连接层和批量归一化(BN)以及参数化ReLU(PReLU)操作来融合局部特征和周围上下文的输出,获取联合特征。
4. 全局上下文提取器(fglo):使用全局平均池化层聚合全局上下文,并通过多层感知器来进一步提取全局上下文。然后,使用缩放层以提取的全局上下文对联合特征进行加权,以强调有用的组件并抑制无用的组件。

这个过程是自适应的,因为提取的全局上下文是基于输入图像生成的。CG block 的设计允许CGNet能够有效地从底层到顶层聚合上下文信息,并在语义层面(来自深层)空间层面(来自浅层)捕获上下文信息,这对于语义分割至关重要。

下面就为大家展示了三种用于语义分割的不同架构:

(a) FCN-shape(全卷积网络形状): 此模型遵循图像分类的设计原则,忽略了上下文信息。它可能使用一系列卷积和池化层来处理输入图像,并生成输出,但没有显式地对各个层次的特征周围上下文进行建模。

(b) FCN-CM(全卷积网络-上下文模块): 此模型只在编码阶段后捕获上下文信息,通过执行一个上下文模块来从语义层次提取上下文信息。

(c) 我们提出的CGNet(上下文引导网络): 捕获所有阶段的上下文特征,从语义层次和空间层次两方面进行。

总结:CGB_Down的设计旨在充分利用局部特征、周围上下文和全局上下文,通过这种结构设计,CGNet能够在局部和全局上下文之间建立联系,这对于准确分类图像中的每个像素至关重要。此外,CGB_Down还采用了残差学习来帮助学习复杂特征并在训练期间改善梯度的反向传播。


2.2  局部特征提取器

局部特征提取器(记为floc(*))是上下文引导块(CG block)的一个组成部分,专门用于学习输入数据中的局部特征。在CGNet的设计中,这个局部特征提取器通过标准的3×3卷积层实现,其目的是从图像中的局部区域提取特征。这些局部特征随后与周围上下文特征结合,形成了网络对各个区域的全面理解,这对于语义分割尤为重要。

CGNet使用的局部特征提取器与周围上下文提取器(fsur(*)一起工作,确保模型不仅能够理解每个像素或局部区域的信息,而且还能理解这些区域在整体上下文中的关系。这种提取器能够捕捉到的细节和局部变化信息对于精确地分类图像中的每个像素至关重要,特别是在需要细粒度预测的任务中,如在复杂场景中区分不同的物体和表面。

CGNet的结构设计还包括减少参数数量,其中局部特征提取器和周围上下文提取器采用了通道卷积(channel-wise convolutions),以减少跨通道的计算成本并大幅节约内存。这种设计允许CGNet即使在资源受限的环境中(如移动设备)也能有效运行,同时保持高准确率和实时性。


2.3  周围上下文提取器

周围上下文提取器f_{sur}(*))在CGNet架构中的作用和原理包括:

1. 提取更广泛的上下文信息:周围上下文提取器使用扩展卷积(例如空洞卷积)来增加感受野的大小,从而捕获更宽广的上下文信息。这允许模型观察到更大区域的特征,而不仅仅是局部的细节。

2. 辅助局部特征理解:通过结合局部特征和周围上下文,f_{sur}(*)能够提供额外的信息,帮助模型更好地理解复杂的场景。例如,在辨识一个物体时,除了物体本身的特征外,它的周围环境也提供了重要的线索。

3. 改进语义分割的准确性:研究表明,周围上下文的信息对于提高语义分割的准确性非常有益。在不同的架构实验中,引入f_{sur}(*)都能显著提升分割的准确率。

4. 在网络的所有块中使用:为了充分利用周围上下文的优势,f_{sur}(*)在CGNet的所有块中都有应用,以保证整个网络都能受益于周围上下文信息的提取。

5. 空间金字塔池化:在一些变体中,f_{sur}(*)可能会采用空间金字塔池化来聚合不同尺度的上下文信息,这有助于模型捕捉从最小的细节到整体布局的不同层面的信息。

总结:通过这些设计,周围上下文提取器加强了CGNet处理各种尺度信息的能力,这在处理高分辨率图像和复杂场景的语义分割任务中尤其重要。 


2.4  联合特征提取器

联合特征提取器f_{joi}(*))在CGNet中的作用是整合由局部特征提取器和周围上下文提取器提取的特征。这些特征分别捕捉到了输入数据的细节(局部特征)和更广阔区域内的信息(周围上下文)。联合特征提取器的设计目的是为了使得网络能够同时考虑局部和上下文信息,从而提高语义分割的准确性。下面是它的一些关键点:

1. 特征融合:联合特征提取器通过连接(concatenation)操作将局部特征和周围上下文特征结合起来,形成一个综合的特征表示。

2. 增强特征表示:联合后的特征通过批量归一化(Batch Normalization, BN)和参数化的线性单元(Parametric ReLU, PReLU)等操作进行进一步的加工,以增强特征表示的能力。

3. 全局上下文的整合:在某些设计中,联合特征还会与全局上下文特征(f_{glo}(*))结合,以利用整个输入图像的信息来进一步优化特征。

联合特征提取器是上下文引导网络实现其高效语义分割能力的关键连接点,它允许网络在局部精细度和全局上下文间达到平衡.

下图为大家展示了上下文引导网络(Context Guided Network, CGNet)的架构。这个网络通过以下阶段处理输入图像来生成预测:

1. Stage 1:包含连续的3x3卷积层,这些层负责提取输入图像的初步特征。

2. Stage 2:由多个CG块组成,数量用"M"表示。每个CG块都结合了局部特征提取器和周围上下文提取器,它们一起工作以捕获更复杂的局部和上下文信息。

3. Stage 3:包含更多的CG块,数量用"N"表示,这一阶段进一步提炼特征,以捕捉更高层次的上下文信息。

4. 1x1 Conv:一个1x1的卷积层用于将特征映射到目标类别的数量,为最终的上采样和分类做准备。

5. 上采样(Upsample):使用上采样或逆卷积操作将特征图尺寸扩大回输入图像的尺寸。

6. 预测(Prediction):最终的预测图,其中每个像素被分配了一个类别标签,展示了对输入图像进行语义分割的结果。

总结:CGNet的设计旨在实现高效的语义分割,通过在网络的不同阶段利用局部和全局上下文信息来提高准确率,同时保持模型的轻量级特性。这使CGNet特别适合于资源受限的设备,如移动设备或嵌入式系统。在图中的预测示例中,可以看到网络已经将不同的交通参与者和背景要素成功地分割出来,用不同的颜色标记不同的类别。


2.5  全局上下文提取器

全局上下文提取器f_{glo}(*))在CGNet中的作用是捕获并利用整个输入图像的全局信息,以增强联合特征提取器学习到的特征。以下是它的基本原理

1. 全局特征汇总:全局上下文提取器通过全局平均池化(Global Average Pooling, GAP)来聚合整个特征图的全局信息。这个步骤产生一个全局特征向量,它捕获了输入图像中每个通道的平均响应。

2. 多层感知机处理:全局特征向量随后通过一个多层感知机(Multilayer Perceptron, MLP)进一步处理。MLP能够学习特征间的复杂非线性关系,进一步细化全局上下文特征。

3. 特征重标定:提取的全局上下文通过缩放层(scale layer)与联合特征结合。这个操作相当于将全局上下文信息作为权重,通道级别地重新标定联合特征,强调有用的特征部分,抑制不重要的特征部分。

4. 自适应性:全局上下文提取器的操作是自适应的,因为提取的全局上下文是根据输入图像生成的,使得网络能够针对不同的图像生成定制化的全局上下文。

5. 提高分割准确性:在消融研究中,使用全局上下文提取器可以提高分割的准确性。这证明了全局上下文在提升模型性能方面的价值。

提供了上下文引导块(Context Guided block)的概览。在图中的全局上下文提取器f_{glo}(*)部分,展示了使用全局平均池化(GAP)来提取全图的上下文信息,然后通过两个全连接层(FC)对这些信息进行进一步的处理。这有助于网络理解整个图像的全局信息,这对于分类图像中的局部区域特别重要,尤其是在这些局部区域的类别可能依赖于全局上下文的情况下。

这些组件共同工作,提高了网络对复杂场景中各种尺度的特征的理解能力,使得CGNet能够更准确地进行语义分割。通过这样的设计,CGNet能够在局部和全局上下文之间建立联系,这对于准确分类图像中的每个像素至关重要。


三、ContextGuided的核心代码

核心代码的使用方式看章节四!

import torch
from collections import OrderedDict
import torch.nn as nn
import torch.nn.functional as F

__all__ = ['BottleNeck_ContextGuided', 'BasicBlock_ContextGuided', 'ContextGuidedBlock_Down']

class ConvBNPReLU(nn.Module):
    def __init__(self, nIn, nOut, kSize, stride=1):
        """
        args:
            nIn: number of input channels
            nOut: number of output channels
            kSize: kernel size
            stride: stride rate for down-sampling. Default is 1
        """
        super().__init__()
        if isinstance(kSize, tuple):
            kSize = kSize[0]
        padding = int((kSize - 1) / 2)
        self.conv = nn.Conv2d(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias=False)
        self.bn = nn.BatchNorm2d(nOut, eps=1e-03)
        self.act = nn.PReLU(nOut)

    def forward(self, input):
        """
        args:
           input: input feature map
           return: transformed feature map
        """
        output = self.conv(input)
        output = self.bn(output)
        output = self.act(output)
        return output


class BNPReLU(nn.Module):
    def __init__(self, nOut):
        """
        args:
           nOut: channels of output feature maps
        """
        super().__init__()
        self.bn = nn.BatchNorm2d(nOut, eps=1e-03)
        self.act = nn.PReLU(nOut)

    def forward(self, input):
        """
        args:
           input: input feature map
           return: normalized and thresholded feature map
        """
        output = self.bn(input)
        output = self.act(output)
        return output


class ConvBN(nn.Module):
    def __init__(self, nIn, nOut, kSize, stride=1):
        """
        args:
           nIn: number of input channels
           nOut: number of output channels
           kSize: kernel size
           stride: optinal stide for down-sampling
        """
        super().__init__()
        if isinstance(kSize, tuple):
            kSize = kSize[0]
        padding = int((kSize - 1) / 2)
        self.conv = nn.Conv2d(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias=False)
        self.bn = nn.BatchNorm2d(nOut, eps=1e-03)

    def forward(self, input):
        """
        args:
           input: input feature map
           return: transformed feature map
        """
        output = self.conv(input)
        output = self.bn(output)
        return output


class Conv(nn.Module):
    def __init__(self, nIn, nOut, kSize, stride=1):
        """
        args:
            nIn: number of input channels
            nOut: number of output channels
            kSize: kernel size
            stride: optional stride rate for down-sampling
        """
        super().__init__()
        if isinstance(kSize, tuple):
            kSize = kSize[0]
        padding = int((kSize - 1) / 2)
        self.conv = nn.Conv2d(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias=False)

    def forward(self, input):
        """
        args:
           input: input feature map
           return: transformed feature map
        """
        output = self.conv(input)
        return output


class ChannelWiseConv(nn.Module):
    def __init__(self, nIn, nOut, kSize, stride=1):
        """
        Args:
            nIn: number of input channels
            nOut: number of output channels, default (nIn == nOut)
            kSize: kernel size
            stride: optional stride rate for down-sampling
        """
        super().__init__()
        if isinstance(kSize, tuple):
            kSize = kSize[0]
        padding = int((kSize - 1) / 2)
        self.conv = nn.Conv2d(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), groups=nIn,
                              bias=False)

    def forward(self, input):
        """
        args:
           input: input feature map
           return: transformed feature map
        """
        output = self.conv(input)
        return output


class DilatedConv(nn.Module):
    def __init__(self, nIn, nOut, kSize, stride=1, d=1):
        """
        args:
           nIn: number of input channels
           nOut: number of output channels
           kSize: kernel size
           stride: optional stride rate for down-sampling
           d: dilation rate
        """
        super().__init__()
        if isinstance(kSize, tuple):
            kSize = kSize[0]
        padding = int((kSize - 1) / 2) * d
        self.conv = nn.Conv2d(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias=False,
                              dilation=d)

    def forward(self, input):
        """
        args:
           input: input feature map
           return: transformed feature map
        """
        output = self.conv(input)
        return output


class ChannelWiseDilatedConv(nn.Module):
    def __init__(self, nIn, nOut, kSize, stride=1, d=1):
        """
        args:
           nIn: number of input channels
           nOut: number of output channels, default (nIn == nOut)
           kSize: kernel size
           stride: optional stride rate for down-sampling
           d: dilation rate
        """
        super().__init__()
        if isinstance(kSize, tuple):
            kSize = kSize[0]
        padding = int((kSize - 1) / 2) * d
        self.conv = nn.Conv2d(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), groups=nIn,
                              bias=False, dilation=d)

    def forward(self, input):
        """
        args:
           input: input feature map
           return: transformed feature map
        """
        output = self.conv(input)
        return output

class FGlo(nn.Module):
    """
    the FGlo class is employed to refine the joint feature of both local feature and surrounding context.
    """

    def __init__(self, channel, reduction=16):
        super(FGlo, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y

class ContextGuidedBlock_Down(nn.Module):
    """
    the size of feature map divided 2, (H,W,C)---->(H/2, W/2, 2C)
    """

    def __init__(self, nIn, dilation_rate=2, reduction=16):
        """
        args:
           nIn: the channel of input feature map
           nOut: the channel of output feature map, and nOut=2*nIn
        """
        super().__init__()

        nOut = nIn

        self.conv1x1 = ConvBNPReLU(nIn, nOut, 3, 2)  # size/2, channel: nIn--->nOut

        self.F_loc = ChannelWiseConv(nOut, nOut, 3, 1)
        self.F_sur = ChannelWiseDilatedConv(nOut, nOut, 3, 1, dilation_rate)

        self.bn = nn.BatchNorm2d(2 * nOut, eps=1e-3)
        self.act = nn.PReLU(2 * nOut)
        self.reduce = Conv(2 * nOut, nOut, 1, 1)  # reduce dimension: 2*nOut--->nOut

        self.F_glo = FGlo(nOut, reduction)

    def forward(self, input):
        output = self.conv1x1(input)
        loc = self.F_loc(output)
        sur = self.F_sur(output)

        joi_feat = torch.cat([loc, sur], 1)  # the joint feature
        joi_feat = self.bn(joi_feat)
        joi_feat = self.act(joi_feat)
        joi_feat = self.reduce(joi_feat)  # channel= nOut

        output = self.F_glo(joi_feat)  # F_glo is employed to refine the joint feature

        return output


class ContextGuidedBlock(nn.Module):
    def __init__(self, nIn, nOut, dilation_rate=2, reduction=16, add=False):
        """
        args:
           nIn: number of input channels
           nOut: number of output channels,
           add: if true, residual learning
        """
        super().__init__()
        n = int(nOut / 2)
        self.conv1x1 = ConvBNPReLU(nIn, n, 1, 1)  # 1x1 Conv is employed to reduce the computation
        self.F_loc = ChannelWiseConv(n, n, 3, 1)  # local feature
        self.F_sur = ChannelWiseDilatedConv(n, n, 3, 1, dilation_rate)  # surrounding context
        self.bn_prelu = BNPReLU(nOut)
        self.add = add
        self.F_glo = FGlo(nOut, reduction)

    def forward(self, input):
        output = self.conv1x1(input)
        loc = self.F_loc(output)
        sur = self.F_sur(output)

        joi_feat = torch.cat([loc, sur], 1)

        joi_feat = self.bn_prelu(joi_feat)

        output = self.F_glo(joi_feat)  # F_glo is employed to refine the joint feature
        # if residual version
        if self.add:
            output = input + output
        return output


class ConvNormLayer(nn.Module):
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size,
                 stride,
                 groups=1,
                 act=None):
        super(ConvNormLayer, self).__init__()
        self.act = act
        self.conv = nn.Conv2d(
            in_channels=ch_in,
            out_channels=ch_out,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups)

        self.norm = nn.BatchNorm2d(ch_out)


    def forward(self, inputs):

        out = self.conv(inputs)
        out = self.norm(out)
        if self.act:
            out = getattr(F, self.act)(out)
        return out

class SELayer(nn.Module):
    def __init__(self, ch, reduction_ratio=16):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(ch, ch // reduction_ratio, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(ch // reduction_ratio, ch, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y.expand_as(x)


class BasicBlock_ContextGuided(nn.Module):
    expansion = 1
    def __init__(self,
                 ch_in,
                 ch_out,
                 stride,
                 shortcut,
                 act='relu',
                 variant='b',
                 att=False):
        super().__init__()
        self.shortcut = shortcut
        if not shortcut:
            if variant == 'd' and stride == 2:
                self.short = nn.Sequential()
                self.short.add_sublayer(
                    'pool',
                    nn.AvgPool2d(
                        kernel_size=2, stride=2, padding=0, ceil_mode=True))
                self.short.add_sublayer(
                    'conv',
                    ConvNormLayer(
                        ch_in=ch_in,
                        ch_out=ch_out,
                        filter_size=1,
                        stride=1))
            else:
                self.short = ConvNormLayer(
                    ch_in=ch_in,
                    ch_out=ch_out,
                    filter_size=1,
                    stride=stride)

        self.branch2a = ConvNormLayer(
            ch_in=ch_in,
            ch_out=ch_out,
            filter_size=3,
            stride=stride,
            act='relu')

        """↓ 替换了此处的ConvNormLayer ↓"""
        # 有需要的上面的也可以替换
        self.branch2b = ContextGuidedBlock(
            ch_out,
            ch_out)
        #         self.branch2b = ConvNormLayer(
        #             ch_in=ch_out,
        #             ch_out=ch_out,
        #             filter_size=3,
        #             stride=1,
        #             act=None)
        """↑ 替换了此处的ConvNormLayer ↑"""


        self.att = att
        if self.att:
            self.se = SELayer(ch_out)

    def forward(self, inputs):
        out = self.branch2a(inputs)
        out = self.branch2b(out)

        if self.att:
            out = self.se(out)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        out = out + short
        out = F.relu(out)

        return out


class BottleNeck_ContextGuided(nn.Module):
    expansion = 4

    def __init__(self, ch_in, ch_out, stride, shortcut, act='relu', variant='d', att=False):
        super().__init__()

        if variant == 'a':
            stride1, stride2 = stride, 1
        else:
            stride1, stride2 = 1, stride

        width = ch_out

        self.branch2a = ConvNormLayer(ch_in, width, 1, stride1, act=act)
        self.branch2b = ConvNormLayer(width, width, 3, stride2, act=act)
        """↓ 替换了此处的ConvNormLayer ↓"""
        # 有需要的上面的也可以替换
        self.branch2c = ContextGuidedBlock(width, ch_out * self.expansion)
        # self.branch2c = ConvNormLayer(width, ch_out * self.expansion, 1, 1)
        """↑ 替换了此处的ConvNormLayer ↑"""

        self.shortcut = shortcut
        if not shortcut:
            if variant == 'd' and stride == 2:
                self.short = nn.Sequential(OrderedDict([
                    ('pool', nn.AvgPool2d(2, 2, 0, ceil_mode=True)),
                    ('conv', ConvNormLayer(ch_in, ch_out * self.expansion, 1, 1))
                ]))
            else:
                self.short = ConvNormLayer(ch_in, ch_out * self.expansion, 1, stride)

        self.att = att
        if self.att:
            self.se = SELayer(ch_out)

    def forward(self, x):
        out = self.branch2a(x)
        out = self.branch2b(out)
        out = self.branch2c(out)

        if self.att:
            out = self.se(out)

        if self.shortcut:
            short = x
        else:
            short = self.short(x)

        out = out + short
        out = F.relu(out)

        return out


if __name__ == '__main__':
    x = torch.rand(2, 64, 4, 7)
    dys = ContextGuidedBlock(64, 256)
    print(dys(x).shape)


四、 手把手教你添加ContextGuided(注意看此处)

修改教程分两种,一种是替换修改ResNet中的Basicclock/Bottleneck模块的,一种是在主干上即插即用的修改教程,如果你只需要一种那么修改对应的就行,互相之间并不影响,需要注意的是即插即用的需要修改ResNet改进才行,链接如下:

ResNet文章地址:【RT-DETR改进涨点】ResNet18、34、50、101等多个版本移植到ultralytics仓库(RT-DETR官方一比一移植)


4.1 修改Basicclock/Bottleneck的教程

4.1.1 修改一

第一还是建立文件,我们找到如下ultralytics/nn/modules文件夹下建立一个目录名字呢就是'Addmodules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.1.2 修改二 

第二步此处需要注意,因为我这里默认大家修改了ResNet系列的模型了,同级目录下应该有一个ResNet.py的文件夹,我们这里需要找到我们'ultralytics/nn/Addmodules/ResNet.py'创建的ResNet的文件夹(默认大家已经创建了!!!)

我们只需要修改上面的两步即可,后面复制yaml文件进行运行即可了,修改方法大家只要仔细看是非常简单的。


4.2 修改主干上即插即用的教程

4.2.1 修改一(如果修改了4.1教程此步无需修改)

第一还是建立文件,我们找到如下ultralytics/nn/modules文件夹下建立一个目录名字呢就是'Addmodules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.2.2 修改二 

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。


4.2.3 修改三 

第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块(用群内的文件的话已经有了无需重新导入直接开始第四步即可)

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!


4.2.4 修改四 

按照我的添加在parse_model里添加即可。

        elif m in {ContextGuidedBlock_Down}:
            c2 = ch[f]
            args = [c2, *args]

到此就修改完成了,大家可以复制下面的yaml文件运行。

 


五、ContextGuided的yaml文件

5.1 替换ResNet的yaml文件1(ResNet18版本)

需要修改如下的ResNet主干才可以运行本文的改进机制 !

 ResNet文章地址:【RT-DETR改进涨点】ResNet18、34、50、101等多个版本移植到ultralytics仓库(RT-DETR官方一比一移植)

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 0-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 1
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 2
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 3-P2

  - [-1, 2, Blocks, [64,  BasicBlock_ContextGuided, 2, False]] # 4
  - [-1, 2, Blocks, [128, BasicBlock_ContextGuided, 3, False]] # 5-P3
  - [-1, 2, Blocks, [256, BasicBlock_ContextGuided, 4, False]] # 6-P4
  - [-1, 2, Blocks, [512, BasicBlock_ContextGuided, 5, False]] # 7-P5

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 8 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 10, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 11
  - [6, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 12 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256, 0.5]]  # 14, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 15, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 16
  - [5, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 17 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 18 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]  # X3 (19), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]  # 20, downsample_convs.0
  - [[-1, 15], 1, Concat, [1]]  # 21 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]  # F4 (22), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]  # 23, downsample_convs.1
  - [[-1, 10], 1, Concat, [1]]  # 24 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]  # F5 (25), pan_blocks.1

  - [[19, 22, 25], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]]  # Detect(P3, P4, P5)


5.2 替换ResNet的yaml文件1(ResNet50版本)

需要修改如下的ResNet主干才可以运行本文的改进机制 !

 ResNet文章地址:【RT-DETR改进涨点】ResNet18、34、50、101等多个版本移植到ultralytics仓库(RT-DETR官方一比一移植)

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 0-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 1
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 2
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 3-P2


  - [-1, 3, Blocks, [64,  BottleNeck_ContextGuided, 2, False]] # 4
  - [-1, 4, Blocks, [128, BottleNeck_ContextGuided, 3, False]] # 5-P3
  - [-1, 6, Blocks, [256, BottleNeck_ContextGuided, 4, False]] # 6-P4
  - [-1, 3, Blocks, [512, BottleNeck_ContextGuided, 5, False]] # 7-P5

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 8 input_proj.2
  - [-1, 1, AIFI, [1024, 8]] # 9
  - [-1, 1, Conv, [256, 1, 1]]  # 10, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 11
  - [6, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 12 input_proj.1
  - [[-2, -1], 1, Concat, [1]] # 13
  - [-1, 3, RepC3, [256]]  # 14, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]   # 15, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 16
  - [5, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 17 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 18 cat backbone P4
  - [-1, 3, RepC3, [256]]    # X3 (19), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]   # 20, downsample_convs.0
  - [[-1, 15], 1, Concat, [1]]  # 21 cat Y4
  - [-1, 3, RepC3, [256]]    # F4 (22), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]   # 23, downsample_convs.1
  - [[-1, 10], 1, Concat, [1]]  # 24 cat Y5
  - [-1, 3, RepC3, [256]]    # F5 (25), pan_blocks.1

  - [[19, 22, 25], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 6]]  # Detect(P3, P4, P5)


5.3 即插即用的yaml文件(HGNetV2版本)

此版本为HGNetV2-l的yaml文件!

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]]  # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]]  # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]]  # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]]  # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]]  # 4-P3/16
  - [-1, 6, HGBlock, [192, 1024, 5, True, False]]  # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]]  # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]]  # 8-P4/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]]  # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]]  # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, RepC3, [256]]  # X3 (21), fpn_blocks.1

  - [-1, 1, ContextGuidedBlock_Down, []]  # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]]  # cat Y4
  - [-1, 3, RepC3, [256]]  # F4 (24), pan_blocks.0

  - [-1, 1, ContextGuidedBlock_Down, []]  # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]]  # cat Y5
  - [-1, 3, RepC3, [256]]  # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]]  # Detect(P3, P4, P5)


六、成功运行记录 

6.1 ResNet18运行成功记录截图


​6.2 ResNet50运行成功记录截图


6.3 HGNetv2运行成功记录截图


七、全文总结 

到此本文的正式分享内容就结束了,在这里给大家推荐我的RT-DETR改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR  

### RT-DETR 检测头改进方法 RT-DETR 是一种基于 Transformer 的目标检测框架,其核心在于通过改进检测头来提升模型性能。以下是关于如何改进 RT-DETR 模型检测头的具体实现方式: #### 1. **引入更高效的注意力机制** 为了提高检测头的效率和准确性,可以考虑采用稀疏注意力机制或分组注意力机制替代标准自注意力模块。这种方法能够显著减少计算复杂度并增强特征提取能力[^1]。 ```python class SparseAttention(nn.Module): def __init__(self, dim, num_heads=8, dropout=0.1): super(SparseAttention, self).__init__() assert dim % num_heads == 0 self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim ** -0.5 def forward(self, q, k, v): batch_size = q.size(0) # Split heads and reshape tensors q = q.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) k = k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) v = v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) attn_scores = torch.matmul(q, k.transpose(-2, -1)) * self.scale attn_probs = F.softmax(attn_scores, dim=-1) context = torch.matmul(attn_probs, v) context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.head_dim) return context ``` #### 2. **优化损失函数设计** 传统的 DETR 使用二部图匹配作为训练策略,但在实际应用中可能遇到收敛速度慢的问题。可以通过调整损失权重或者引入额外监督信号(如边界框回归辅助损失)进一步改善模型表现[^2]。 具体来说,在原有分类交叉熵与 L1 距离误差基础上增加 GIoU (Generalized Intersection over Union),有助于更好地约束预测框位置分布特性: \[ \text{Total Loss} = \lambda_{cls}\cdot\mathcal{L}_{cls}+\lambda_{bbox}\cdot(\mathcal{L}_{l1}+\mathcal{L}_{giou}) \] 其中 \( \lambda_{cls}, \lambda_{bbox} \) 表示不同子项前系数参数调节比例关系. #### 3. **多尺度特征融合技术** 借鉴其他先进架构设计理念比如FPN(Fully Pyramid Network), PANet(Path Aggregation Network)等思路构建多层次信息交互网络结构,使得低层细节保留充分的同时也能获取高层语义抽象表示效果更好. --- ### 总结 通过对上述几个方面的深入研究与实践验证表明这些改动确实能带来一定幅度上的性能增益,并且具备较强可操作性和理论支撑基础。如果希望撰写相关领域学术文章,则建议围绕以上几展开详尽论述说明实验过程及其结果分析等内容。
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值