YOLOv8改进 | 细节涨点篇 | UNetv2提出的一种SDI多层次特征融合模块(分割高效涨点)

本文介绍了YOLOv8改进中的一种新机制——SDI(Semantic and Detail Infusion)模块,源自UNetv2,用于替代Concat操作。SDI通过空间和通道注意机制整合不同层级特征,提升目标检测的语义和细节信息。文章详细讲解了SDI的原理,并提供了添加SDI到模型的步骤,包括核心代码和yaml配置文件,适用于PyTorch实现的计算机视觉任务。

一、本文介绍 

本问给大家带来的改进机制是UNetv2提出的一种多层次特征融合模块(SDI)其是一种用于替换Concat操作的模块,SDI模块的主要思想是通过整合编码器生成的层级特征图来增强图像中的语义信息和细节信息。该方法已在多个公开的医学图像分割数据集上进行了验证,包括皮肤病变分割和息肉分割,展示了其在这些分割任务中相比于现有方法的效果。所以其的一开始提出使用于分割,但是其也可以用于目标检测,亲测效果非常好,同时该结构主要是可以用于替换我们各种Neck中的结构形成二次创新比如之前的BiFPN,我们可以用其替换其在的Fusion操作从而形成二次创新。

欢迎大家订阅我的专栏一起学习YOLO!

专栏目录:

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值