YOLOv5改进 | Conv篇 | 添加DWRSeg扩张式残差卷积助力小目标检测(附代码 + 添加教程)

本文介绍了如何利用DWRSeg改进YOLOv5的C3和Bottleneck模块,提升小目标检测性能。通过深入研究多尺度特征提取机制和提出DWR、SIR模块,实现更有效的特征提取。文中提供了DWR模块的复现代码和手把手的添加教程,以及推荐的添加位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、本文介绍

本文内容给大家带来的DWRSeg中的DWR模块来改进YOLOv5中的C3和Bottleneck模块,主要针对的是小目标检测,主要创新点可以总结如下:多尺度特征提取机制的深入研究和创新的DWR模块和SIR模块的提出这种方法使得网络能够更灵活地适应不同尺度的特征,从而更准确地识别和分割图像中的物体。 通过本文你能够了解到:DWRSeg的基本原理和框架,并且能够在你自己的网络结构中进行添加(DWRSeg需要增加一定的计算量一个DWR模块大概增加0.4GFLOPs)。

 推荐指数:⭐⭐⭐⭐

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

目录

一、本文介绍

二、DWRSeg的原理介绍

​编辑​

2.1 DWRSeg的主要思想 

2.2 多尺度特征提取机制的深入研究

2.3 创新的DWR模块和SIR模块的提出

三、DWR模块代码

3.1 DWR模块复现代码

四、手把手教你添加DWRSeg和C3_DWR模块

 4.1 细节修改教程

4.1.1 修改一

​4.1.2 修改二

4.1.3 修改三 

4.1.4 修改四

4.2 DWRSeg的yaml文件(仔细看这个否则会报错)

4.2.1 DWRSeg的yaml文件一

4.2.2 DBB的yaml文件二

4.3 DWRS

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值