
本文专辑 : 茶桁的AI秘籍 - BI篇
原文链接: https://mp.weixin.qq.com/s/kLEg_VcxAACy8dH35kK3zg
Hi,你好。我是茶桁。
学习总是一个循序渐进的过程,之前两节课的内容中,咱们去了解了LR和SVM在实际项目中是如何使用的,我给大家看了两个项目都是跟分类相关,一个是员工离职预测,一个是男女声音识别。
其实也能看到,男女声音识别也不一定都要用神经网络,能找到一些关键特征把它转化为结构化的数据你也可以用机器学习来完成预测,而且机器学习的效果还是非常好,基本上都有百分之97,98的准确性。
那今天这节课主要给大家讲解的是「机器学习的神器」,也是今天最主要的内容。
这个内容希望大家多去仔细阅读,如果你遇到哪些问题可以给我留言,文章下或者私信都可以,基本上,一些容易解答的问题我都会给予回复,大家保持一个良好的学习的方法。
集成学习
这些机器学习的神器都跟集成学习相关,先给大家看一个概念叫集成学习。集成学习就是把多个分类器合到一起,可以把它理解成叫三个臭裨将顶个诸葛亮。

集中学习里面有些策略,Bagging是一种,它像一个袋子一样,数据是放到袋子里面去,叫有放回的抽样方式。这个袋子里面如果你要做一个分类的模型会按照少数服从多数。最简单的就是一个陪审团,看一看大家投票的情况,这是分类问题。回归问题我们要用的是大家的平均值,你预测一下薪酬,他预测一下薪酬,把大家预测结果相加以后除上个数就是求平均值。这些都是一个banging的策略,集中学习把这些大家的结果给合并到一起

订阅专栏 解锁全文
2万+

被折叠的 条评论
为什么被折叠?



