04. BI - LightGBM vs CatBoost,具体实现分析

本文专辑: 茶桁的 AI 秘籍 - BI 篇

茶桁的AI秘籍 核心BI 04


Hi,你好。我是茶桁。

那今天我们是来讲解另外两个Boosting的工具,首先是微软出品的LightGBM。

LightGBM

LightGBM 是微软提出来的, 是属于XGBoost的升级版,也曾经是Kaggle里面使用模型最多的机器学习的神器。当然,目前LightGBM 之外,BERT以及GPT都越来越受关注,但是LightGBM 这么久了,依然还是占据一席之地,依然还是某些性质及任务要求下的首选。

Light的概念就是轻和快,GBM 全称为 Gradient Boosting Machine,这个GBM就把它理解成就是GBDT,所以它其实就是轻量级的GBDT,而且是升级版本。所以我们看一看,它到底做了哪些轻量级的一些操作。

常用的机器学习算法,例如神经网络等算法,都可以以mini-batch的方式训练,训练数据的大小不会受到内存限制。

GBDT 在每一次迭代的时候,都需要遍历整个训练数据多次。如果把整个训练数据装进内存则会限制训练数据的大小,如果不装进内存,反复地读写训练数据又会消耗非常大的时间。对于工业级海量的数据,普通的 GBDT 算法是不能满足其需求的。

LightGBM 的提出是为了解决 GBDT 在海量数据遇到的问题,让 GBDT 可以更好更快地用于工业场景。

我们看整个的例子,先让大家有个直观的感受。

我找了四个数据集,然后用 XGBoost, XGBoost_approx 以及 LightGBM 来做一个比较. 其中 XGBoost_approx 是2016年左右提出来的 XGBoost 的近似版.

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

茶桁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值