Distance Queries
| Time Limit: 2000MS | Memory Limit: 30000K | |
| Total Submissions: 8642 | Accepted: 3036 | |
| Case Time Limit: 1000MS | ||
Description
Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in "Navigation Nightmare",followed by a line containing a single integer K, followed by K "distance queries". Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ's distance queries as quickly as possible!
Input
* Lines 1..1+M: Same format as "Navigation Nightmare"
* Line 2+M: A single integer, K. 1 <= K <= 10,000
* Lines 3+M..2+M+K: Each line corresponds to a distance query and contains the indices of two farms.
* Line 2+M: A single integer, K. 1 <= K <= 10,000
* Lines 3+M..2+M+K: Each line corresponds to a distance query and contains the indices of two farms.
Output
* Lines 1..K: For each distance query, output on a single line an integer giving the appropriate distance.
Sample Input
7 6 1 6 13 E 6 3 9 E 3 5 7 S 4 1 3 N 2 4 20 W 4 7 2 S 3 1 6 1 4 2 6
Sample Output
13 3 36
Hint
Farms 2 and 6 are 20+3+13=36 apart.
题意:
给出 N 和 M,代表有 N 个节点 M 条无向边。后给出这 M 条边的两端点编号和距离和方位(方位可以无视)。后有 K 个询问,每个询问输出一个答案,输出这两个点的距离。
思路:
LCA(最近公共祖先)(倍增法)。预处理每个结点的深度值 和 根节点到每个节点的距离值 dis,求出 两个点的 LCA 后 d = dis [ A ] + dis [ B ] - 2 X dis [ LCA ] 即可。
AC:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int NMAX = 40005;
const int EMAX = NMAX * 5;
int ind, n, MAX_V;
int fir[NMAX], next[EMAX], v[EMAX], w[EMAX];
int par[20][NMAX], dep[NMAX], dis[NMAX];
void add_edge(int f, int t, int val) {
v[ind] = t;
next[ind] = fir[f];
fir[f] = ind;
w[ind] = val;
++ind;
}
void dfs(int i, int fa, int k, int d) {
par[0][i] = fa;
dep[i] = k;
dis[i] = d;
for (int e = fir[i]; e != -1; e = next[e]) {
if (v[e] != fa) dfs(v[e], i, k + 1, d + w[e]);
}
}
void init() {
dfs(1, -1, 0, 0);
for (int i = 0; i < MAX_V - 1; ++i) {
for (int j = 1; j <= n; ++j) {
if (par[i][j] < 0) par[i + 1][j] = -1;
else par[i + 1][j] = par[i][ par[i][j] ];
}
}
}
int lca(int f, int t) {
if (dep[t] > dep[f]) { int a = f; f = t; t = a; }
int dis = dep[f] - dep[t];
for (int i = 0; i < MAX_V; ++i)
if ((dis >> i) & 1) f = par[i][f];
if (f == t) return f;
for (int i = MAX_V - 1; i >= 0; --i) {
if (par[i][f] != par[i][t]) {
f = par[i][f];
t = par[i][t];
}
}
return par[0][f];
}
int main() {
int m;
scanf("%d%d", &n, &m);
memset(fir, -1, sizeof(fir));
ind = 0;
MAX_V = 0;
while ((1 << MAX_V) <= n) ++MAX_V;
while (m--) {
int a, b, num;
char d;
scanf("%d%d%d %c", &a, &b, &num, &d);
add_edge(a, b, num);
add_edge(b, a, num);
}
init();
int k;
scanf("%d", &k);
while (k--) {
int f, t;
scanf("%d%d", &f, &t);
int ans = lca(f, t);
printf("%d\n", dis[f] + dis[t] - 2 * dis[ans]);
}
return 0;
}
本文深入探讨了深度学习在人工智能领域的应用,包括卷积神经网络、循环神经网络、自动推理系统等关键技术,并展示了它们在图像处理、语音识别、自然语言处理等实际场景中的应用案例。
333

被折叠的 条评论
为什么被折叠?



