Distance Queries(LCA+tarjan)

Farmer John面临一个问题,他的奶牛拒绝参加马拉松比赛,因为路线太长。他希望找到一条更合理的路径。输入包括“Navigation Nightmare”问题的相同输入,后面跟着一个整数K,表示距离查询的数量。每个距离查询包含两个农场的编号,需要计算两者之间的路径距离。输出为每个查询的距离。样例输入和输出展示了具体的操作过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Distance Queries

Farmer John’s cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in “Navigation Nightmare”,followed by a line containing a single integer K, followed by K “distance queries”. Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ’s distance queries as quickly as possible!
Input

  • Lines 1…1+M: Same format as “Navigation Nightmare”

  • Line 2+M: A single integer, K. 1 <= K <= 10,000

  • Lines 3+M…2+M+K: Each line corresponds to a distance query and contains the indices of two farms.
    Output

  • Lines 1…K: For each distance query, output on a single line an integer giving the appropriate distance.
    Sample Input
    7 6
    1 6 13 E
    6 3 9 E
    3 5 7 S
    4 1 3 N
    2 4 20 W
    4 7 2 S
    3
    1 6
    1 4
    2 6
    Sample Output
    13
    3
    36
    Hint
    Farms 2 and 6 are 20+3+13=36 apart.

ac代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN = 80080;
const int MAXQ = 20020;
 
int father[MAXN],Head[MAXN],QHead[MAXN],Dist[MAXN];
 
struct EdgeNode
{
   
    int to;
    int next;
    int lca;
}Edges[MAXN];
 
EdgeNode QEdges[MAXN];
 
int find(int x)
{
   
    if(x != father[x])
        father[x] = find(father[x])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值