取对数最短路
#include<iostream>
#include<vector>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<cmath>
#include<cassert>
#include<cstring>
#include<iomanip>
using namespace std;
#ifdef _WIN32
typedef __int64 i64;
#define out64 "%I64d\n"
#define in64 "%I64d"
#else
typedef long long i64;
#define out64 "%lld\n"
#define in64 "%lld"
#endif
/************ for topcoder by zz1215 *******************/
#define FOR(i,a,b) for( int i = (a) ; i <= (b) ; i ++)
#define FFF(i,a) for( int i = 0 ; i < (a) ; i ++)
#define FFD(i,a,b) for( int i = (a) ; i >= (b) ; i --)
#define S64(a) scanf(in64,&a)
#define SS(a) scanf("%d",&a)
#define LL(a) ((a)<<1)
#define RR(a) (((a)<<1)+1)
#define pb push_back
#define CL(Q) while(!Q.empty())Q.pop()
#define MM(name,what) memset(name,what,sizeof(name))
#define read freopen("in.txt","r",stdin)
#define write freopen("out.txt","w",stdout)
const int inf = 0x3f3f3f3f;
const i64 inf64 = 0x3f3f3f3f3f3f3f3fLL;
const double oo = 10e9;
const double eps = 10e-9;
const double pi = acos(-1.0);
const int maxn = 50011;
int n;
struct zz
{
int from;
int to;
double c;
}zx;
vector<zz>g[maxn];
double way[maxn];
bool inq[maxn];
int s,t;
double w;
void spfa()
{
for(int i=1;i<=n;i++)
{
way[i]=-oo;
inq[i]=false;
}
deque<int>q;
q.clear();
q.push_back(s);
inq[s]=true;
way[s]=0.0;
int now,to;
double temp;
while(!q.empty())
{
now = q.front();
q.pop_front();
for(int i=0;i<g[now].size();i++)
{
to = g[now][i].to;
temp = g[now][i].c + way[now];
if(temp > way[to] + eps)
{
way[to]=temp;
if(!inq[to])
{
inq[to]=true;
if(!q.empty() && temp > way[q[0]])
{
q.push_front(to);
}
else
{
q.push_back(to);
}
}
}
}
inq[now]=false;
}
return ;
}
int main()
{
while(cin>>n)
{
int k;
for(int i=1;i<=n;i++)
{
g[i].clear();
}
for(int i=1;i<=n;i++)
{
SS(k);
zx.from = i;
for(int j=1;j<=k;j++)
{
SS(zx.to);
scanf("%lf",&zx.c);
zx.c = 100.0 - zx.c;
zx.c/=100.0;
zx.c = log(zx.c);
g[zx.from].pb(zx);
}
}
cin>>s>>t>>w;
spfa();
if(abs(way[t]-oo)<eps)
{
cout<<"IMPOSSIBLE!"<<endl;
}
else
{
printf("%.2lf\n",w-exp(way[t])*w);
}
}
return 0;
}