dpn[x]表示以x为根的子树间互相不联通但是可能和x联通所需要删除的边权
dpy[x]表示以x为根的子树间互相不联通而且不能和x联通所需要删除的边权
遍历每个点,通过它的子节点信息更新它的信息,
当x的子节点y上有机器时:dpn[x]+=dpn[y]+cost;
设临时变量temp>?=cost;
当子节点y上没有机器时:dpn[x]+=min(dpy[to]+cost,dpn[to]);
临时变量:temp>?=min(dpy[to]+cost,dpn[to])-dpy[to];
遍历每个点,通过它的子节点信息更新它的信息,
当x的子节点y上有机器时:dpn[x]+=dpn[y]+cost;
设临时变量temp>?=cost;
当子节点y上没有机器时:dpn[x]+=min(dpy[to]+cost,dpn[to]);
临时变量:temp>?=min(dpy[to]+cost,dpn[to])-dpy[to];
最后更新dpy[x];
if(x上没机器)dpy[x]=dpn[x]-temp;
复杂度O(n) 比较简单的中档题
#include<iostream>
#include<vector>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<cmath>
#include<cassert>
#include<cstring>
#include<iomanip>
using namespace std;
#ifdef _WIN32
typedef __int64 i64;
#define out64 "%I64d\n"
#define in64 "%I64d"
#else
typedef long long i64;
#define out64 "%lld\n"
#define in64 "%lld"
#endif
/************ for topcoder by zz1215 *******************/
#define FOR(i,a,b) for( int i = (a) ; i <= (b) ; i ++)
#define FFF(i,a) for( int i = 0 ; i < (a) ; i ++)
#define FFD(i,a,b) for( int i = (a) ; i >= (b) ; i --)
#define S64(a) scanf(in64,&a)
#define SS(a) scanf("%d",&a)
#define LL(a) ((a)<<1)
#define RR(a) (((a)<<1)+1)
#define pb push_back
#define CL(Q) while(!Q.empty())Q.pop()
#define MM(name,what) memset(name,what,sizeof(name))
#define read freopen("in.txt","r",stdin)
#define write freopen("out.txt","w",stdout)
const int inf = 0x3f3f3f3f;
const i64 inf64 = 0x3f3f3f3f3f3f3f3fLL;
const double oo = 10e9;
const double eps = 10e-9;
const double pi = acos(-1.0);
const int maxn = 100111;
struct zz
{
int from;
int to;
int cost;
}zx;
int n,k;
vector<zz>g[maxn];
bool you[maxn];
i64 dpn[maxn]; //和x不通
i64 dpy[maxn]; //和x通
int f[maxn];
void df1(int now)
{
int to;
for(int i=0;i<g[now].size();i++)
{
to = g[now][i].to;
if(f[to]==-1)
{
f[to]=now;
df1(to);
}
}
return ;
}
void df2(int now)
{
int to;
int cost;
i64 temp = 0;
for(int i=0;i<g[now].size();i++)
{
to = g[now][i].to;
cost = g[now][i].cost;
if(to!=f[now])
{
df2(to);
if(you[to])
{
dpn[now]+=dpn[to]+cost;
if(cost>temp)
{
temp = cost;
}
}
else
{
dpn[now]+=min(dpy[to]+cost,dpn[to]);
if(min(dpy[to]+cost,dpn[to])-dpy[to]>temp)
{
temp = min(dpy[to]+cost,dpn[to])-dpy[to];
}
}
}
}
if(!you[now])
{
dpy[now]=dpn[now]-temp;
}
return ;
}
i64 start()
{
for(int i=0;i<n;i++)
{
f[i]=-1;
dpn[i]=0;
dpy[i]=0;
}
f[0]=-2;
df1(0);
df2(0);
if(!you[0])
{
return dpy[0];
}
else
{
return dpn[0];
}
}
int main()
{
int T;
cin>>T;
while(T--)
{
cin>>n>>k;
for(int i=0;i<n;i++)
{
you[i]=false;
g[i].clear();
}
for(int i=1;i<=n-1;i++)
{
cin>>zx.from>>zx.to>>zx.cost;
g[zx.from].pb(zx);
swap(zx.from,zx.to);
g[zx.from].pb(zx);
}
int now;
for(int i=1;i<=k;i++)
{
cin>>now;
you[now]=true;
}
cout<<start()<<endl;
}
return 0;
}