线性代数及三维旋转矩阵(与3D和WebGL相关)

本文介绍了WebGL中的三维坐标系、正交坐标系和右手坐标系的概念,并探讨了线性代数中的矢量、标量、点积和叉积。还讲解了齐次坐标在几何变换中的作用,以及4x4矩阵在3D图形中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.基本概念:

WebGL中使用三维/正交/右手坐标系

 

三维:三个坐标轴(x轴/y轴/z轴)

正交:两两垂直

右手:x轴拇指正方向/y轴食指正方向/z轴无名指正方向

 

3D坐标系中原点的位置:(Vx, Vy, Vz)=(0, 0, 0)

 

标量:有大小无方向(如:温度/质量/能量)

矢量:有大小有方向(如:力/加速度/速度)

 

矢量相加/矢量相减

 

矢量乘以标量等于一个新的矢量:KV = (KVx + KVy + KVz)

V = (Vx, Vy, Vz)

如果K为-1,则得到一个与原矢量大小相等/方向相反的新矢量

 

3D空间中两个矢量相乘有两种方式:

点积/标积(scalar product)

叉积(cross product)

 

点积

定义: u.v = |u||v|cos@

代数形式: U.V = UxVx + UyVy + UzVz (x/y/z两两相乘之

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值