Time Limit:1000MS | Memory Limit:30000K | |
Total Submissions:9761 | Accepted:2274 |
Description
Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).
Input
The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.
Output
The only line of the output will contain S modulo 9901.
Sample Input
2 3
Sample Output
15
Hint
2^3 = 8.
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
这是一道数学性比较强的题,求的是给定数的所有约数和。
思路:首先找到该数的所有素因子及个数,然后求和,有两种方法:一乘法逆元,二,二分幂法,其中第一种方法有局限,只有当存在逆元时,才可以用。
AC代码:
#include<iostream>
#include<string.h>
#include<cstdio>
#include<cmath>
#define M 9901
#define N 10000
#define CLR(arr,val) memset(arr,val,sizeof(arr))
using namespace std;
typedef long long L;
int prim[N];
int sum[N];
int res;
L pow( L p,L n)
{
L res=1;
while(n)
{
if(1&n) res=(res*p)%M;
p=(p%M*p%M)%M;
n=n>>1;
}
return res;
}
L _pow(L n,L m)
{
if(n==0) return 0;
else if(n==1||m==0) return 1;
else
{
if(m&1) return (_pow(n,m/2)%M*(1+pow(n,m/2+1))%M)%M;
else return( _pow(n,m/2-1)%M*(1+pow(n,m/2+1))%M)%M+pow(n,m/2)%M;
}
}
int main()
{
int a,b;
scanf("%d%d",&a,&b);
CLR(prim,0);
CLR(sum,0);
int count=0;
for(int i=2;i*i<=a;++i)
{
if(a%i==0)
{
prim[++count]=i;
while(a%i==0)
{
sum[count]++;
a/=i;
}
}
}
if(a!=1) prim[++count]=a,sum[count]=1;
L ans=1;
for(int i=1;i<=count;++i)
if(sum[i]) ans=ans*_pow(prim[i],sum[i]*b)%M;
printf("%d\n",ans);
return 0;
}