因为公司有一个合作项目牵涉到,这几天抽空看了一下proof of storage的paper,复习了一下本科学的密码学的内容,觉得还是一个很有意思的topic。其中一个reference挺难找的,记在这里吧。下面讨论的原理还是基于大整数的分解问题。
http://diswww.mit.edu/bloom-picayune/crypto/13190
Adi Shamir once proposed the following hash function:
Let n = p*q be the product of two large primes, such that
factoring n is believed to be infeasible.
Let g be an element of maximum order in Z_n^* (i.e. an
element of order lambda(n) = lcm(p-1,q-1)).
Assume that n and g are fixed and public; p and q are secret.
Let x be an input to be hashed, interpreted as a
non-negative integer. (Of arbitrary length; this may be
considerably larger than n.)
Define hash(x) = g^x (mod n).
Then this hash function is provably collision-resistant, since
the ability to find a collision means that you have an x and
an x' such that
hash(x) = hash(x')
which implies that
x - x' = k * lambda(n)
for some k. That is a collision implies that you can find a
multiple of lambda(n). Being able to find a multiple of lambda(n)
means that you can factor n.
I would suggest this meets the specs of your query above.
Cheers,
Ron Rivest
Ronald L. Rivest
Room 324, 200 Technology Square, Cambridge MA 02139
Tel 617-253-5880, Fax 617-258-9738, Email <rivest@mit.edu>
本文详细解析了由Adi Shamir 提出的一种基于大整数分解问题的Hash函数原理,该函数利用两个大质数的乘积作为基础,通过特定元素在模数下的最大阶特性来实现碰撞抵抗性。
1316

被折叠的 条评论
为什么被折叠?



