堆和栈的区别

本文详细介绍了C/C++程序中的内存分配机制,包括栈、堆、全局区、文字常量区和程序代码区的功能与特点。并通过实例解释了它们在程序运行过程中的作用,对比了栈与堆在申请方式、响应、大小限制等方面的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、预备知识—程序的内存分配

由C/C++编译的程序占用的内存分为以下几个部分
1、栈区(stack): 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
2、堆区(heap): 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表。
3、全局区(static): 全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域,程序结束后有系统释放 。
4、文字常量区: 常量字符串就是放在这里的, 程序结束后由系统释放。
5、程序代码区: 存放函数体的二进制代码。

Example:

int a = 0; // 全局初始化区
char *p1; // 全局未初始化区
main()
{
int b; // 栈
char s[] = "abc"; // 栈
char *p2; // 栈
char *p3 = "123456"; // 123456\0在常量区,p3在栈上。
static int c =0; // 全局(静态)初始化区
p1 = (char *)malloc(10);
p2 = (char *)malloc(20); // 分配得来得10和20字节的区域就在堆区。
strcpy(p1, "123456"); // 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。
}


二、堆和栈的理论知识

2.1 申请方式
栈: 由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间
堆: 需要程序员自己申请,并指明大小,在c中malloc函数:如p1 = (char *)malloc(10); 在C++中用new运算符 如p2 = (char *)malloc(10); 但是注意p1、p2本身是在栈中的。

2.2 申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时, 会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。

2.3 申请大小的限制
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。

2.4 申请效率的比较:
栈:由系统自动分配,速度较快。但程序员是无法控制的。
堆:是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便。
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。

2.5 堆和栈中的存储内容
栈: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

2.6 存取效率的比较
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在运行时刻赋值的;
而bbbbbbbbbbb是在编译时就确定的;
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
比如:
#include
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
对应的汇编代码
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据edx读取字符,显然慢了。

2.7 小结:
堆和栈的区别可以用如下的比喻来看出: 使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。 使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。

还有就是函数调用时会在栈上有一系列的保留现场及传递参数的操作。栈的空间大小有限定,VC的缺省是2M。栈不够用的情况一般是程序中分配了大量数组和递归函数层次太深。有一点必须知道,当一个函数调用完返回后它会释放该函数中所有的栈空间。栈是由编译器自动管理的,不用你操心。堆是动态分配内存的,并且你可以分配使用很大的内存。但是用不好会产生内存泄漏。并且频繁地malloc和free会产生内存碎片(有点类似磁盘碎片),因为C分配动态内存时是寻找匹配的内存的。而用栈则不会产生碎片。在栈上存取数据比通过指针在堆上存取数据快些。一般大家说的堆栈和栈是一样的,就是栈(stack),而说堆时才是堆heap。栈是先入后出的,一般是由高地址向低地址生长。
<think>好的,用户想了解区别以及函数调用时通常使用哪一种。首先,我需要回顾的基本概念。根据引用[2],函数调用时会使用来维护函数帧,包括临时变量现场保护。由系统自动管理,而需要手动分配释放,比如用malloc或new。 接下来,我得整理两者的主要区别。内存分配方式:自动分配,手动。管理方式:由编译器管理,由程序员控制。生命周期方面,变量随函数结束释放,需要显式释放。空间大小也不同,通常较小,较大。分配效率上,更快,较慢。碎片问题,几乎没有,可能有碎片。 然后,函数调用中的使用场景。根据引用[2],函数调用时使用来保存局部变量、参数返回地址。通常用于动态数据,如需要长期存在或大内存的情况。比如,在递归函数中,可能会溢出,这时候可能需要用,但一般情况下函数调用还是依赖。 用户可能还关心为什么函数调用用而不是,可能需要解释的高效自动管理的优势。另外,可能需要提到溢出内存泄漏的问题,帮助用户理解两者的风险。 需要确保回答结构清晰,分点说明区别,再分别说明使用场景。同时引用相关的参考资料,如函数帧的维护内存管理部分。最后,生成的相关问题要围绕的对比应用,可能包括内存分配错误、数据结构选择等。</think>### 的主要区别及函数调用时的使用场景 #### 一、的核心区别 1. **内存分配方式** - ****:由系统自动分配释放,例如函数调用时局部变量的存储空间$arr[0]$[^2] - ****:需手动申请(如`malloc`/`new`)释放(如`free`/`delete`),例如动态创建对象或数组 2. **管理方式与生命周期** - ****:编译器自动管理,变量生命周期与函数调用周期一致,函数结束时自动销毁[^2] - ****:程序员需显式控制内存生命周期,忘记释放会导致内存泄漏 3. **空间大小与扩展性** - ****:空间有限(通常MB级别),超出容量会导致溢出(如深度递归时) - ****:可用空间可达系统虚拟内存上限,适合大块数据存储 4. **性能对比** - ****:分配仅需移动指针,效率高(纳秒级) - ****:需通过内存管理器,可能涉及系统调用,效率较低(微秒级) 5. **内存碎片** - ****:严格后进先出(LIFO),无碎片问题 - ****:频繁分配释放可能产生内存碎片 --- #### 二、函数调用中的典型应用 1. **的核心使用场景** - **局部变量存储**:如函数内定义的`int x`或结构体实例 - **函数调用链**:保存返回地址、参数传递、寄存器状态等 - **临时表达式计算**:如算术运算中间结果`(a+b)*c` - **自动作用域管理**:通过指针自动回收资源 2. **的典型应用场景** - **动态数据结构**:如链表节点`Node* p = new Node()` - **大内存需求**:超过容量的大型数组`int* buf = new int[1e6]` - **跨函数生命周期**:需在多个函数间共享的数据 - **不确定大小的对象**:如运行时决定长度的字符串 --- #### 三、示例对比 ```cpp // 内存示例:自动管理 void func_stack() { int a = 10; // 分配 char buffer[1024]; // 数组 } // 内存示例:手动管理 void func_heap() { int* p = new int(20); // 分配 delete p; // 必须显式释放 } ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值