对于低精度的标定板平均误差比halcon要小
import cv2
import numpy as np
import matplotlib.pyplot as plt
import glob
imgpath=r'F:\socket\bd\1.bmp'
# 加载图像
image = cv2.imread(imgpath)
# 棋盘格的行数和列数
grid_size = (7, 7) # 假设棋盘格有7行7列
def getCorners(gray):
# 使用 findCirclesGrid 函数检测棋盘格
# flags 参数可以是 cv2.CALIB_CB_SYMMETRIC_GRID 或 cv2.CALIB_CB_ASYMMETRIC_GRID
# 根据棋盘格的对称性选择
params = cv2.SimpleBlobDetector_Params()
params.maxArea = 10e4
params.minArea = 10
params.minDistBetweenBlobs = 5
blobDetector = cv2.SimpleBlobDetector_create(params)
return cv2.findCirclesGrid(gray, grid_size, cv2.CALIB_CB_SYMMETRIC_GRID, blobDetector, None)
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((7*7,3), np.float32)
objp[:,:2] = np.mgrid[0:7,0:7].T.reshape(-1,2)
# A