Spring AI与RAG技术实战:构建企业级智能文档问答系统
引言
在人工智能技术飞速发展的今天,如何将AI能力有效集成到企业应用中成为了技术团队面临的重要挑战。Spring AI作为Spring生态系统中的AI集成框架,结合RAG(检索增强生成)技术,为企业构建智能文档问答系统提供了完整的解决方案。本文将深入探讨如何使用Spring AI和RAG技术构建高效、准确的企业级智能问答系统。
技术架构概述
核心组件
- Spring AI框架:提供统一的AI模型接入接口
- RAG架构:检索增强生成技术栈
- 向量数据库:Milvus/Chroma/Redis等
- Embedding模型:OpenAI/Ollama等
- 文档处理管道:文档加载、分块、向量化
系统架构设计
客户端 → Spring Boot应用 → RAG服务 → 向量数据库
↓
AI模型服务
环境准备与依赖配置
Maven依赖配置
<dependencies>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai-spring-boot-starter</artifactId>
<version>0.8.1</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<!-- 向量数据库客户端 -->
<dependency>
<groupId>io.milvus</groupId>
<artifactId>milvus-sdk-java</artifactId>
<version>2.3.4</version>
</dependency>
</dependencies>
核心实现步骤
1. 文档处理与向量化
@Service
public class DocumentProcessor {
@Autowired
private EmbeddingClient embeddingClient;
public List<DocumentChunk> processDocument(String documentContent) {
// 文档分块
List<String> chunks = splitDocument(documentContent);
// 生成向量嵌入
List<List<Double>> embeddings = embeddingClient.embed(chunks);
return createDocumentChunks(chunks, embeddings);
}
private List<String> splitDocument(String content) {
// 基于语义的分块算法
return TextSplitter.semanticSplit(content, 500); // 每块约500字符
}
}
2. 向量存储与管理
@Repository
public class VectorStoreService {
@Autowired
private MilvusClient milvusClient;
public void storeVectors(List<DocumentChunk> chunks) {
List<Float> vectors = chunks.stream()
.map(chunk -> convertToFloatVector(chunk.getEmbedding()))
.collect(Collectors.toList());
List<Map<String, String>> metadata = chunks.stream()
.map(chunk -> createMetadata(chunk))
.collect(Collectors.toList());
milvusClient.insert("documents_collection", vectors, metadata);
}
public List<DocumentChunk> searchSimilarVectors(List<Double> queryVector, int topK) {
List<Float> floatVector = convertToFloatVector(queryVector);
SearchParam searchParam = SearchParam.newBuilder()
.withCollectionName("documents_collection")
.withVector(floatVector)
.withTopK(topK)
.build();
return milvusClient.search(searchParam);
}
}
3. RAG服务实现
@Service
public class RagService {
@Autowired
private ChatClient chatClient;
@Autowired
private VectorStoreService vectorStoreService;
public String answerQuestion(String question) {
// 1. 生成问题向量
List<Double> questionEmbedding = embeddingClient.embed(question);
// 2. 检索相关文档片段
List<DocumentChunk> relevantChunks =
vectorStoreService.searchSimilarVectors(questionEmbedding, 5);
// 3. 构建上下文
String context = buildContext(relevantChunks);
// 4. 生成回答
Prompt prompt = new Prompt(
"基于以下上下文信息回答问题。\n" +
"上下文: " + context + "\n" +
"问题: " + question + "\n" +
"回答:"
);
return chatClient.generate(prompt).getGeneration().getText();
}
private String buildContext(List<DocumentChunk> chunks) {
return chunks.stream()
.map(DocumentChunk::getContent)
.collect(Collectors.joining("\n\n"));
}
}
4. REST API接口
@RestController
@RequestMapping("/api/rag")
public class RagController {
@Autowired
private RagService ragService;
@PostMapping("/question")
public ResponseEntity<ApiResponse> answerQuestion(
@RequestBody QuestionRequest request) {
try {
String answer = ragService.answerQuestion(request.getQuestion());
return ResponseEntity.ok(ApiResponse.success(answer));
} catch (Exception e) {
return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR)
.body(ApiResponse.error("处理问题失败"));
}
}
@PostMapping("/documents")
public ResponseEntity<ApiResponse> processDocument(
@RequestBody DocumentProcessRequest request) {
try {
documentService.processAndStoreDocument(request.getContent());
return ResponseEntity.ok(ApiResponse.success("文档处理成功"));
} catch (Exception e) {
return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR)
.body(ApiResponse.error("文档处理失败"));
}
}
}
高级特性实现
1. 多模型支持
@Configuration
public class AiModelConfig {
@Bean
@ConditionalOnProperty(name = "ai.provider", havingValue = "openai")
public ChatClient openAiChatClient() {
return new OpenAiChatClient();
}
@Bean
@ConditionalOnProperty(name = "ai.provider", havingValue = "ollama")
public ChatClient ollamaChatClient() {
return new OllamaChatClient();
}
}
2. 缓存优化
@Service
public class CachedRagService {
@Autowired
private RagService ragService;
@Cacheable(value = "rag_answers", key = "#question")
public String answerQuestionWithCache(String question) {
return ragService.answerQuestion(question);
}
}
3. 性能监控
@Component
public class RagMetrics {
private final MeterRegistry meterRegistry;
public RagMetrics(MeterRegistry meterRegistry) {
this.meterRegistry = meterRegistry;
}
@Around("execution(* com.example.service.RagService.answerQuestion(..))")
public Object monitorAnswerTime(ProceedingJoinPoint pjp) throws Throwable {
Timer.Sample sample = Timer.start(meterRegistry);
try {
return pjp.proceed();
} finally {
sample.stop(Timer.builder("rag.answer.time")
.description("RAG问答处理时间")
.register(meterRegistry));
}
}
}
部署与运维
Docker容器化部署
FROM openjdk:17-jdk-slim
WORKDIR /app
COPY target/rag-system.jar app.jar
EXPOSE 8080
ENTRYPOINT ["java", "-jar", "app.jar"]
Kubernetes部署配置
apiVersion: apps/v1
kind: Deployment
metadata:
name: rag-system
spec:
replicas: 3
selector:
matchLabels:
app: rag-system
template:
metadata:
labels:
app: rag-system
spec:
containers:
- name: rag-app
image: rag-system:latest
ports:
- containerPort: 8080
env:
- name: AI_PROVIDER
value: "openai"
- name: MILVUS_HOST
value: "milvus-service"
---
apiVersion: v1
kind: Service
metadata:
name: rag-service
spec:
selector:
app: rag-system
ports:
- port: 80
targetPort: 8080
性能优化策略
1. 向量索引优化
public void optimizeVectorIndex() {
IndexType indexType = IndexType.IVF_FLAT;
Map<String, Object> extraParams = new HashMap<>();
extraParams.put("nlist", 1024);
milvusClient.createIndex("documents_collection", indexType, extraParams);
}
2. 批量处理优化
public void batchProcessDocuments(List<String> documents) {
// 使用并行流处理大量文档
documents.parallelStream()
.map(this::processDocument)
.forEach(this::storeVectors);
}
3. 内存管理
@Configuration
public class MemoryConfig {
@Bean
public CacheManager cacheManager() {
CaffeineCacheManager cacheManager = new CaffeineCacheManager();
cacheManager.setCaffeine(Caffeine.newBuilder()
.maximumSize(1000)
.expireAfterWrite(10, TimeUnit.MINUTES));
return cacheManager;
}
}
错误处理与容错
1. 重试机制
@Retryable(value = {ApiException.class},
maxAttempts = 3,
backoff = @Backoff(delay = 1000))
public String reliableAnswerQuestion(String question) {
return ragService.answerQuestion(question);
}
2. 降级策略
@Fallback(fallbackMethod = "fallbackAnswer")
public String answerQuestionWithFallback(String question) {
return ragService.answerQuestion(question);
}
public String fallbackAnswer(String question) {
return "系统暂时无法处理您的问题,请稍后再试";
}
测试策略
单元测试
@SpringBootTest
class RagServiceTest {
@MockBean
private VectorStoreService vectorStoreService;
@MockBean
private ChatClient chatClient;
@Autowired
private RagService ragService;
@Test
void testAnswerQuestion() {
// 模拟向量搜索返回结果
when(vectorStoreService.searchSimilarVectors(any(), anyInt()))
.thenReturn(createMockChunks());
// 模拟AI回答
when(chatClient.generate(any())).thenReturn(
new Generation("这是测试回答"));
String answer = ragService.answerQuestion("测试问题");
assertNotNull(answer);
}
}
集成测试
@SpringBootTest(webEnvironment = WebEnvironment.RANDOM_PORT)
class RagControllerIntegrationTest {
@LocalServerPort
private int port;
@Test
void testQuestionEndpoint() {
QuestionRequest request = new QuestionRequest("什么是Spring AI?");
ResponseEntity<ApiResponse> response = restTemplate.postForEntity(
"http://localhost:" + port + "/api/rag/question",
request,
ApiResponse.class
);
assertEquals(HttpStatus.OK, response.getStatusCode());
assertTrue(response.getBody().isSuccess());
}
}
安全考虑
1. API认证
@Configuration
@EnableWebSecurity
public class SecurityConfig {
@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
http
.authorizeHttpRequests(authz -> authz
.requestMatchers("/api/rag/**").authenticated()
.anyRequest().permitAll())
.oauth2ResourceServer(OAuth2ResourceServerConfigurer::jwt);
return http.build();
}
}
2. 输入验证
public class QuestionRequest {
@NotBlank
@Size(max = 1000)
private String question;
// getters and setters
}
总结与展望
本文详细介绍了如何使用Spring AI和RAG技术构建企业级智能文档问答系统。通过合理的架构设计、性能优化和安全考虑,我们可以构建出既高效又可靠的AI应用系统。
未来的发展方向包括:
- 多模态支持:支持图片、音频等非文本内容
- 实时学习:系统能够从用户反馈中持续学习优化
- 个性化推荐:基于用户历史提供个性化答案
- 边缘计算:在边缘设备上部署轻量级模型
Spring AI生态系统的不断成熟将为开发者提供更多强大的工具和框架,帮助企业更好地利用AI技术提升业务价值。
Spring AI与RAG构建智能问答系统
856

被折叠的 条评论
为什么被折叠?



