SpringAI框架中的RAG模块详解及应用示例

SpringAI框架中的RAG模块详解及应用示例

RAG(Retrieval-Augmented Generation)可以通过检索知识库,克服大模型训练完成后参数冻结的局限性,携带知识让大模型根据知识进行回答。SpringAI框架提供了模块化的API来支持RAG,主要包括QuestionAnswerAdvisorRetrievalArgumentAdvisor

QuestionAnswerAdvisor

QuestionAnswerAdvisor主要提供便捷简单的RAG流功能,只需指定一些简单的参数即可。例如,假设数据已加载到vectorStore中,可以通过以下方法进行RAG知识库检索:

QuestionAnswerAdvisor questionAnswerAdvisor = QuestionAnswerAdvisor.builder(vectorStore)
    .searchRequest(SearchRequest.builder()
        .similarityThreshold(0.5) // 只返回相似度高于0.5的结果
        .topK(3) // 只返回前三个结果
        .filterExpression(newFilterExpressionBuilder().eq("a", "b").build()) // 只检索 a==b 的文档
        .build())
    .build();

ChatClient chatClient = ChatClient.builder(openAiChatModel)
    .defaultOptions(OpenAiChatOptions.builder().model("gpt-3.5-turbo").build())
    .build();

ChatResponse response = chatClient.prompt().advisors(questionAnswerAdvisor)
    .us
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值