Codeforces 1202D 思维 构造

原题链接

题意

  • 每组数据给我们一个n,然后要求我们用{1, 3, 7}这三种字符来组成一个长度小于1e5的序列,要求其中为1337的子序列(不要求相邻)的数量恰好为n

思路

  • 首先可以考虑最简单的一种构造方式,开头为133,后面接n个7,这样一定是正确的,但是长度会超过限定

  • 我们注意到上面那种方法,每增加一个7,1337子序列数量会增加1,增加速度比较慢,所以我们寻找一种新的“逼近n”的增长方法——也就是每增加一个7,1337的数量增加量为一个变量

  • 因为7前面是3,我们考虑增加3的数量之后,再逐个增加7的数量

  • 我们发现,如果在增加的一个7前方有m个3,则1337子序列增加量为

m ∗ ( m − 1 ) / 2 m * (m - 1) / 2 m(m1)/2

  • 这里其实也就正好达到了我们之前提到的目的,让每次增加量为变量,我们可以假设一开始1后面有无数的3,然后我们从这些3中间插入7,每次插入的贡献值显然就是由上面的式子来算出。我们设为 f ( m ) f(m) f(m)

  • 那么如何使得我们插入的k个7的贡献值的和为n?,也就是

∑ 1 k f ( a i ) = n \sum_1^k{f(a_i)} = n 1kf(ai)=n
(a_i为每次加入7时前方的3个数)

  • 我们可以对n 不断减去小于等于它的最大f(m)(如果为了容易思考,可以使用二分逼近),同时记录这个m,直到n等于0。这样,我们也就得到了上面的a_i

  • 之后将a_i从小到大排列,不断输出补充3达到对应的a_i数量,然后结尾加上7,将所有a_i操作完之后,答案也就构造完毕了。

AC代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

long long n;
int t;
long long aa[100005], co = 0;

long long search(long long x)
{
	long long l = 2, r = x * 2;
	while (l + 5 <= r)
	{
		long long mid = (l + r) >> 1;
		if ((mid - 1) * mid / 2 <= x)
		{
			l = mid;
		}
		else
		{
			r = mid - 1;
		}
	}
	while ((l - 1) * l / 2 <= x)
	{
		++l;
	}
	return l - 1;
}

int main()
{
	scanf("%d", &t);
	while (t--)
	{
		co = 0;
		scanf("%lld", &n);
		printf("1");
		while (n)
		{
			long long x = search(n);
			aa[++co] = x;
			n -= x * (x - 1) / 2;
		}
		int ll = 0;
		for (int i = co; i >= 1; --i)
		{
			while (ll < aa[i])
			{
				printf("3");
				++ll;
			}
			printf("7");
		}
		printf("\n");
	}
	return 0;
}

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值