「题解」零钱兑换

Give me your money!!1

「我的做题历程」:

step1:观察题面,这可以让我们了解题的类型。
  「编写一个函数来计算可以凑成总金额」,可以得出这是一道背包 DP
  「每种硬币的数量是无限的」,进一步得出这是道完全背包。(题型:完全背包)
  「最少的硬币个数」,证明这要在背包的前提下,求出最小组成数量。
  「多组测试数据」,谨记多组输入 (论 Wrong Answer 与没有多组输入)。(注意:多组输入)


step2:思考解法。
  第一步,思考 dp 状态:

d p i , j dp_{i,j} dpi,j:前 i i i 种硬币凑出面值 j j j 的最少币数。

  对于当前一种硬币 c o i n s i coins_{i} coinsi 而言,只有取或不取两种状态。
  若,取后的币数为前 i − 1 i - 1 i1 种硬币凑出面值 j − w i × k j-w_{i}\times k jwi×k 的总币数加上当前种类所需币数 k k k
  若不取,则说明前 i − 1 i - 1 i1 种硬币已经能够凑出面值 j j j,不需要再取。

  第二步,思考状态转移方程:
  原本完全背包的状态转移方程是:

d p i , j = max ⁡ { d p i − 1 , j , d p i − 1 , j − a i + a i }   ( a i ≤ j ≤ a m o

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值