【算法】leetcode-2016 增量元素之间的最大值

本文解析了一种使用单调栈解决给定整数数组中,找到满足 nums[i] < nums[j] 的最大差值的算法。通过栈操作实现高效计算,实例说明并分析了Solution类中的关键代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给你一个下标从 0 开始的整数数组 nums ,该数组的大小为 n ,请你计算 nums[j] - nums[i] 能求得的 最大差值 ,其中 0 <= i < j < n 且 nums[i] < nums[j] 。

返回 最大差值 。如果不存在满足要求的 i 和 j ,返回 -1 。
示例 1:

输入:nums = [7,1,5,4]
输出:4
解释:
最大差值出现在 i = 1 且 j = 2 时,nums[j] - nums[i] = 5 - 1 = 4 。
注意,尽管 i = 1 且 j = 0 时 ,nums[j] - nums[i] = 7 - 1 = 6 > 4 ,但 i > j 不满足题面要求,所以 6 不是有效的答案。
class Solution {
    public int maximumDifference(int[] nums) {
        //考虑单调递减栈
        Stack<Integer> stack = new Stack<>();
        int ans = -1;
        stack.push(nums[0]);
        for(int i=1;i<nums.length;i++){
            if(nums[i]<=stack.peek()){
                stack.push(nums[i]);
                continue;
            }
            ans = Math.max(ans,nums[i]-stack.peek());
        }
        return ans;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值