Python案例 |地图绘制及分级着色

1、分级着色地图

分级着色地图常用于可视化地理数据,比如人口密度、经济数据、气候变化等。其原理是使用颜色或阴影的渐变来表示不同区域(如国家、省份、城市等)中的数据差异。例如,地图上的每个区域根据其代表的数值被着色,通常数值越大,颜色越深。

2、案例1

import plotly.express as px
import pandas as pd

# 将数据转化为pandas DataFrame
data = {
    'Country': ['Australia', 'United States', 'Brazil', 'Russia', 'India', 'South Africa', ],
    'Value': [100, 90, 80, 70, 85, 95]
}

df = pd.DataFrame(data)

# 创建Choropleth地图
fig = px.choropleth(
    df,
    locations='Country',
    locationmode='country names',
    color='Value', color_continuous_scale='Blues',
    title='分级着色地图'
)
# 显示地图
fig.show()

运行结果:

在这里插入图片描述

2、案例2

import pandas as pd
import plotly.express as px
import numpy as np
import json

with open("china_province.geojson", encoding='utf8') as f:
    provinces_map = json.load(f)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值