第4章第4节 任务切换钩子函数

本文介绍了如何使用任务切换钩子函数来记录实时操作系统中任务间的切换过程。通过定义全局函数指针并将其初始化为空,可在需要时挂载或取消挂载特定函数。文章详细展示了如何在任务调度过程中插入钩子函数,以便于跟踪和调试多任务系统。


目前更新到5.3节,请在
http://dl.dbank.com/c02ackpwp6下载5.3节的全部文档

本节源代码请在http://dl.dbank.com/c0ddwgf0k5下载

 

第4节 任务切换钩子函数

上节,我们引入了任务的delay态,通过最后例子的打印可以看到任务在交替运行,但这个打印只发生在每个任务每次循环的开始,看不到中间运行过程中任务的切换过程。

本小节将引入任务切换钩子函数,输出任务切换过程的打印信息。

 

钩子函数正如其名,它像钩子一样可以将函数挂在它上面,一旦它开始运行,它就会引发挂在它上面的函数也开始运行。按照这个思路,我们可以将一个钩子函数放到任务切换过程中,当我们需要输出任务切换过程的打印时,只需要将相关的打印函数挂到这个钩子函数上就可以了。

 

钩子函数的功能是使用一个指向函数的指针型全局变量实现的,在使用钩子函数前,需要使用钩子添加函数将需要执行的函数挂接到这个全局变量上,这个全局变量此时等效于被挂接的函数,因此运行这个全局变量就相当于是运行被挂接的函数了,来看代码:

定义一个任务切换的钩子全局变量:

VFHSWT gvfTaskSwitchHook;

其中VFHSWT是被挂接函数的类型:

typedef void    (*VFHSWT)(M_TCB*, M_TCB*);

被挂接的函数原型为:

void TEST_TaskSwitchPrint(M_TCB* pstrOldTcb, M_TCB* pstrNewTcb);

可以看到定义的全局变量gvfTaskSwitchHook与函数TEST_TaskSwitchPrint类型是完全一致的,它们都是同一种类型的函数指针。

在使用钩子函数前需要使用钩子初始化函数MDS_TaskHookInit将全局变量gvfTaskSwitchHook初始化为NULL,以表明钩子变量没有挂接函数,不能运行。

00340  void MDS_TaskHookInit(void)

00341  {

00342      

00343      gvfTaskSwitchHook (VFHSWT)NULL;

00344  }

 

添加钩子函数时,将被添加函数TEST_TaskSwitchPrint作为参数传递给钩子添加函数MDS_TaskSwitchHookAddMDS_TaskSwitchHookAdd(TEST_TaskSwitchPrint),执行的过程就是将被添加函数的指针赋给全局变量,使全局变量等效于被添加的函数。

00351  void MDS_TaskSwitchHookAdd(VFHSWT vfFuncPointer)

00352  {

00353      gvfTaskSwitchHook vfFuncPointer;

00354  }

 

删除钩子函数时,就是将全局变量置为NULL,撇清与被添加函数的关系。

00361  void MDS_TaskSwitchHookDel(void)

00362  {

00363      gvfTaskSwitchHook (VFHSWT)NULL;

00364  }

使用钩子函数时,若全局变量gvfTaskSwitchHook不为NULL,说明已经挂接了函数,执行gvfTaskSwitchHook全局变量就相当于执行了被挂接的函数。

 

下面在任务调度函数MDS_TaskSched中增加了任务切换钩子功能,将打印任务切换的函数挂接到此钩子上即可打印出任务切换过程。

00352  void MDS_TaskSched(void)

00353  {

00354      M_TCB* pstrTcb;

00355  

00356      

00357      MDS_TaskDelayTabSched();

00358  

00359      

00360      pstrTcb MDS_TaskReadyTabSched();

00361  

00362  #ifdef MDS_INCLUDETASKHOOK

00363  

00364      

00365      if((VFHSWT)NULL != gvfTaskSwitchHook)

00366      {

00367          

00368          if(pstrTcb != gpstrCurTcb)

00369          {

00370              gvfTaskSwitchHook(gpstrCurTcb, pstrTcb);

00371          }

00372      }

00373  

00374  #endif

00375  

00376      

00377      MDS_TaskSwitch(pstrTcb);

00378  }

000362行,若定义了MDS_INCLUDETASKHOOK宏,才执行任务切换钩子函数。其它与任务切换钩子相关的代码也被该宏包含了,若不想使用钩子功能,不定义该宏即可。

00365行,若已添加了钩子函数,则走下面分支。

00368行,若切换前的任务与切换后的任务是同一个任务,则不执行任务切换钩子函数,只有在发生不同任务切换时才调用任务切换钩子函数。

00370行,执行钩子函数。

 

除了MDS_TaskSched函数,在MDS_TaskReadySched函数里也执行了任务调度功能,也需要增加362~374行的内容。

任务切换钩子函数gvfTaskSwitchHook在任务调度函数调度完成后运行,但它还是处于调度的中断中,因此不能将耗时长的函数挂接到任务切换钩子函数上。

钩子函数可以在代码运行时动态挂接,不需要更改代码,而且,如果需要更改钩子函数执行的功能时,只需要更改挂接到钩子上的函数就可以实现,非常方便。

钩子变量可以有不同的指针类型,但需要与被挂接的函数指针类型保持一致。

 

被挂接函数的打印信息包括了切换时刻,包括了从哪个任务切换到了哪个任务的信息:

00072  void TEST_TaskSwitchPrint(M_TCB* pstrOldTcb, M_TCB* pstrNewTcb)

00073  {

00074      DEV_PutStrToMem((U8*)"\r\nTask %s ---> Task %s! Tick is: %d",

00075                      pstrOldTcb->pucTaskName, pstrNewTcb->pucTaskName,

00076                      MDS_SystemTickGet());

00077  }

上面所使用的pucTaskName结构是任务名指针,它里面存放的是任务名字符串的指针。为了区分每个任务,本小节在TCB里增加了任务名指针pucTaskName这个结构。

typedef struct m_tcb

{

    STACKREG strStackReg;           

    M_TCBQUE strTcbQue;             

    M_TCBQUE strDelayQue;           

    U8* pucTaskName;                

    U32 uiTaskFlag;                 

    U8 ucTaskPrio;                  

    M_TASKOPT strTaskOpt;           

    U32 uiStillTick;                

}M_TCB;

在创建任务时,保存有任务名的字符串的指针作为一个入口参数被传递给MDS_TaskCreate函数,该指针会被赋给TCB中的pucTaskName变量。如果创建的任务没有名称,则任务名参数需要将NULL传递给MDS_TaskCreate函数。

MDS_TaskCreate函数的原型如下,代码改动较小,不再详细介绍。

M_TCB* MDS_TaskCreate(U8* pucTaskName, VFUNC vfFuncPointer, U8* pucTaskStack,

                      U32 uiStackSize, U8 ucTaskPrio, M_TASKOPT* pstrTaskOpt);

 

下面我们来看看验证本节功能的测试函数,测试函数TEST_TestTask1~TEST_TestTask3,循环执行打印、运行、延迟这3个过程,它们会在运行过程中不断的发生切换,本节新增加的钩子函数会将这些切换过程打印出来。

00017  void TEST_TestTask1(void)

00018  {

00019      while(1)

00020      {

00021          DEV_PutStrToMem((U8*)"\r\nTask1 is running! Tick is: %d",

00022                          MDS_SystemTickGet());

00023  

00024          DEV_DelayMs(2000);

00025  

00026          (void)MDS_TaskDelay(150);

00027      }

00028  }

00035  void TEST_TestTask2(void)

00036  {

00037      while(1)

00038      {

00039          DEV_PutStrToMem((U8*)"\r\nTask2 is running! Tick is: %d",

00040                          MDS_SystemTickGet());

00041  

00042          DEV_DelayMs(1000);

00043  

00044          (void)MDS_TaskDelay(100);

00045      }

00046  }

00053  void TEST_TestTask3(void)

00054  {

00055      while(1)

00056      {

00057          DEV_PutStrToMem((U8*)"\r\nTask3 is running! Tick is: %d",

00058                          MDS_SystemTickGet());

00059  

00060          DEV_DelayMs(5000);

00061  

00062          (void)MDS_TaskDelay(500);

00063      }

00064  }

TEST_TestTask1函数不使用任务选项参数,默认为ready态。TEST_TestTask2函数使用ready态的任务选项参数。TEST_TestTask3函数使用任务选项参数,需要先delay 2000ticks

 

00014  void MDS_RootTask(void)

00015  {

00016      M_TASKOPT strOption;

00017  

00018      

00019      DEV_SoftwareInit();

00020  

00021      

00022      DEV_HardwareInit();

00023  

00024      

00025      (void)MDS_TaskCreate((U8*)"Test1", (VFUNC)TEST_TestTask1, gaucTask1Stack,

00026                           TASKSTACK, 2, (M_TASKOPT*)NULL);

00027  

00028      

00029      strOption.ucTaskSta TASKREADY;

00030      (void)MDS_TaskCreate((U8*)"Test2", (VFUNC)TEST_TestTask2, gaucTask2Stack,

00031                           TASKSTACK, 3, &strOption);

00032  

00033      

00034      strOption.ucTaskSta TASKDELAY;

00035      strOption.uiDelayTick 2000;

00036      (void)MDS_TaskCreate((U8*)"Test3", (VFUNC)TEST_TestTask3, gaucTask3Stack,

00037                           TASKSTACK, 1, &strOption);

00038  

00039      (void)MDS_TaskDelay(10000);

00040  

00041  #ifdef MDS_INCLUDETASKHOOK

00042  

00043      

00044      MDS_TaskSwitchHookDel();

00045  

00046  #endif

00047  

00048      (void)MDS_TaskDelay(DELAYWAITFEV);

00049  }

00019行,DEV_SoftwareInit函数里会使用钩子添加函数MDS_TaskSwitchHookAdd将打印切换过程的TEST_TaskSwitchPrint函数添加到钩子变量gvfTaskSwitchHook上。

00039行,root任务delay 10000ticks,在这1000ticks时间内,3个测试任务将不断的发生任务切换,钩子函数会打印出这些切换过程。

00044行,删除任务切换钩子函数,此后将不再打印任务切换过程。

 

root任务具有最高的优先级,当root任务进入delay状态时,操作系统发生第一次任务切换,按照任务状态和任务优先级,我们应该会看到任务切换钩子函数打印出root任务切换到TEST_TestTask1任务的信息,然后TEST_TestTask1任务开始运行,输出打印信息。TEST_TestTask1任务运行200ticks后,调用MDS_TaskDelay函数进入delay状态,这时候应该是切换到TEST_TestTask2任务,我们应该可以看到TEST_TestTask1任务切换到TEST_TestTask2任务的信息。随后TEST_TestTask2任务开始运行,输出TEST_TestTask2任务的打印。此后这2个任务不断的交替运行,当这2个任务都处于delay状态时,idle任务开始运行,将前面切换过程的信息从内存打印到串口上。

当系统运行到2000 ticks时,TEST_TestTask3任务delay时间耗尽,开始运行,它比其它2个任务具有更高的优先级,会抢占正在运行的任务,我们应该可以看到任务切换到了TEST_TestTask3,并输出了TEST_TestTask3的打印信息。此后这3个任务不断的交替运行。

当系统运行到10000 ticks时,任务切换钩子函数被删除,此后我们不会再看到任务切换过程的打印,只能看到任务每次循环的打印。

第4章第4节 <wbr>任务切换钩子函数

图 46  带有任务切换过程的打印

46是一部分串口打印数据,读者可从网站下载视频,观看全部数据的打印过程,可以看到实际打印输出的结果与我们推断的结果是一致的。

 

    我在串口工具中将本节的打印数据捕获了下来,保存到4.4.txt文件里,并使用VC编写了一个小工具,该工具可以解析4.4.tet文件里任务切换过程的数据,描绘出任务切换的过程,使不同任务之间的切换过程看的更直观些。

第4章第4节 <wbr>任务切换钩子函数

//1.mesh构建 using System.Collections; using System.Collections.Generic; using UnityEngine; [RequireComponent(typeof(MeshFilter), typeof(MeshRenderer), typeof(MeshCollider))] public class Potteryprototype : MonoBehaviour { &nbsp;&nbsp;&nbsp; MeshFilter meshFilter; &nbsp;&nbsp;&nbsp; MeshRenderer meshRenderer; &nbsp;&nbsp;&nbsp; MeshCollider meshCollider; &nbsp;&nbsp;&nbsp; Mesh mesh; &nbsp; &nbsp;&nbsp;&nbsp; public int details = 40; &nbsp;&nbsp;&nbsp; public int layer = 20; &nbsp;&nbsp;&nbsp; public float Height = 0.1f; &nbsp; &nbsp;&nbsp;&nbsp; public float OuterRadius = 1.0f; &nbsp;&nbsp;&nbsp; public float InnerRadius = 0.9f; &nbsp; &nbsp;&nbsp;&nbsp; List<Vector3> vertices; &nbsp;&nbsp;&nbsp; List<Vector2> UV; &nbsp;&nbsp;&nbsp; List<int> triangles; &nbsp; &nbsp;&nbsp;&nbsp; float EachAngle ; &nbsp;&nbsp;&nbsp; int SideCount; &nbsp; &nbsp;&nbsp;&nbsp; public MouseControl mouse; &nbsp; &nbsp;&nbsp;&nbsp; void Start() &nbsp;&nbsp;&nbsp; { &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; meshFilter = GetComponent<MeshFilter>(); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; meshCollider = GetComponent<MeshCollider>(); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; meshRenderer = GetComponent<MeshRenderer>(); &nbsp;&nbsp;&nbsp; } &nbsp; &nbsp;&nbsp;&nbsp; [ContextMenu("GeneratePottery")] &nbsp;&nbsp;&nbsp; void GeneratePrototype() &nbsp;&nbsp;&nbsp; { &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; vertices = new List<Vector3>(); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; triangles = new List<int>(); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; UV = new List<Vector2>(); &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; EachAngle = Mathf.PI * 2 / details; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; for (int i = 0; i < layer; i++) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; { &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; GenerateCircle(i); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; } &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Capping(); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; mesh = new Mesh(); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; mesh.vertices = vertices.ToArray(); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; mesh.triangles = triangles.ToArray(); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; mesh.uv = UV.ToArray(); &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; mesh.RecalculateBounds(); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; mesh.RecalculateTangents(); &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; meshFilter.mesh = mesh; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; mesh.RecalculateNormals(); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; meshCollider.sharedMesh = mesh; &nbsp;&nbsp;&nbsp; } &nbsp; &nbsp;&nbsp;&nbsp; void GenerateCircle(int _layer) &nbsp;&nbsp;&nbsp; { &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; //外顶点与内顶点分开存储,方便变化操作时的计算 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; List<Vector3> vertices_outside = new List<Vector3>(); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; List<Vector3> vertices_inside = new List<Vector3>(); &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; List<Vector2> UV_outside = new List<Vector2>(); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; List<Vector2> UV_inside = new List<Vector2>(); &nbsp; &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; //外侧和内侧顶点计算 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; //注意这里让每一圈的首尾重合了,也就是开始和结尾的顶点坐标一致 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; //目的是计算UV坐标时不会出现空缺 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; for (float i = 0; i <= Mathf.PI * 2+EachAngle; i += EachAngle) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; { &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Vector3 v1 = new Vector3(OuterRadius * Mathf.Sin(i),&nbsp; _layer * Height, OuterRadius * Mathf.Cos(i)); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Vector3 v2 = new Vector3(OuterRadius * Mathf.Sin(i),&nbsp; (_layer +1)* Height, OuterRadius * Mathf.Cos(i)); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Vector3 v3 = new Vector3(InnerRadius * Mathf.Sin(i),&nbsp; _layer * Height, InnerRadius * Mathf.Cos(i)); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Vector3 v4 = new Vector3(InnerRadius * Mathf.Sin(i),&nbsp; (_layer+1) * Height, InnerRadius * Mathf.Cos(i)); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; vertices_outside.Add(v1); vertices_outside.Add(v2); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; vertices_inside.Add(v3); vertices_inside.Add(v4); &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Vector2 uv1 = new Vector2(i / Mathf.PI*2, _layer*1.0f / layer * 1.0f); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Vector2 uv2 = new Vector2(i / Mathf.PI*2, (_layer + 1)*1.0f / layer * 1.0f); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Vector2 uv3 = new Vector2(i / Mathf.PI*2, _layer*1.0f / layer * 1.0f); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Vector2 uv4 = new Vector2(i / Mathf.PI*2, (_layer + 1) *1.0f/ layer * 1.0f); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; UV_outside.Add(uv1); UV_outside.Add(uv2); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; UV_inside.Add(uv3); UV_inside.Add(uv4); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; } &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; vertices.AddRange(vertices_outside); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; vertices.AddRange(vertices_inside); &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; UV.AddRange(UV_outside); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; UV.AddRange(UV_inside); &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; SideCount = vertices_outside.Count; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; int j = vertices_outside.Count * _layer * 2; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; int n = vertices_outside.Count; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; for (int i = j; i < j + vertices_outside.Count - 2; i += 2) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; { &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; triangles.Add(i); triangles.Add(i + 2); triangles.Add(i + 1); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; triangles.Add(i + 2); triangles.Add(i + 3); triangles.Add(i + 1); &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; triangles.Add(i + n); triangles.Add(i + n + 1); triangles.Add(i + n + 2); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; triangles.Add(i + n + 2); triangles.Add(i + n + 1); triangles.Add(i + n + 3); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; }&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; } &nbsp;&nbsp;&nbsp; //封顶,底面由于看不见就不用管了 &nbsp;&nbsp;&nbsp; void Capping() &nbsp;&nbsp;&nbsp; { &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; for (float i = 0; i <= Mathf.PI * 2+EachAngle; i += EachAngle) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; { &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Vector3 outer = new Vector3(OuterRadius * Mathf.Sin(i),layer * Height, OuterRadius * Mathf.Cos(i)); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Vector3 inner= new Vector3(InnerRadius * Mathf.Sin(i), layer * Height, InnerRadius * Mathf.Cos(i)); &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;vertices.Add(outer);vertices.Add(inner); &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Vector2 uv1 = new Vector2(i / Mathf.PI * 2,0); Vector2 uv2 = new Vector2(i / Mathf.PI * 2, 1); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; UV.Add(uv1); UV.Add(uv2); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; } &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; int j = SideCount * layer * 2; &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;for (int i=j;i<vertices.Count-2;i+=2) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; { &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; triangles.Add(i);triangles.Add(i + 3);triangles.Add(i + 1); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; triangles.Add(i);triangles.Add(i + 2);triangles.Add(i + 3); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; } &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; triangles.Add(vertices.Count - 2);triangles.Add(j + 1);triangles.Add(vertices.Count - 1); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; triangles.Add(vertices.Count - 2);triangles.Add(j);triangles.Add(j + 1); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; } } &nbsp; //2.动态改变形状 //这个函数放在Update()里调用 &nbsp;&nbsp;&nbsp; void GetMouseControlTransform() &nbsp;&nbsp;&nbsp; { &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; //从屏幕鼠标位置发射一条射线到模型上,获取这个坐标 &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; RaycastHit info; &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; if (Physics.Raycast(ray.origin, ray.direction, out info)) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; { &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; //在Unity中无法直接修改MeshFilter中Mesh的信息,需要新建一个Mesh修改其引用关系 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Mesh mesh = meshFilter.mesh; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Vector3[] _vertices = mesh.vertices; &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; for (int i = 0; i < _vertices.Length; i++) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; { &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; //x,z平面变换 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; //顶点移动与Y值的关系限制在5倍单层高度 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; //这里可以自行修改,限制高度越大,曲线越平滑 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;if (Mathf.Abs(info.point.y - transform.TransformPoint(_vertices[i]).y) < (5 * Height)) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; { &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; //计算顶点移动方向的向量 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Vector3 v_xz = (transform.TransformPoint(_vertices[i]) - new Vector3(transform.position.x, transform.TransformPoint(_vertices[i]).y, transform.position.z)); &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; //外顶点与内顶点移动时相对距离应该保持不变 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; //因为我们知道顶点数组内的顺序关系,所以可以通过计算总顶点数除以每层单侧顶点数的商的奇偶关系来判断是外顶点还是内顶点 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; int n = i / SideCount; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; bool side = n % 2 == 0; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; //判断顶面顶点内外关系 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; bool caps = (i - (SideCount * layer * 2)) % 2 == 0; &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; //限制每个顶点最大和最小的移动距离 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; float max; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; float min; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; if (i < SideCount * layer * 2) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; { &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; max = side ? 2f * OuterRadius : 2f * OuterRadius - (OuterRadius - InnerRadius); &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; min = side ? 0.5f * OuterRadius : 0.5f * OuterRadius - (OuterRadius - InnerRadius); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; } &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; else &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; { &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; max = caps ? 2f * OuterRadius : 2f * OuterRadius - (OuterRadius - InnerRadius); ; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; min = caps ? 0.5f * OuterRadius : 0.5f * OuterRadius - (OuterRadius - InnerRadius); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; } &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; //计算当前顶点到鼠标Y值之间的距离,再用余弦函数算出实际位移距离 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; float dif = Mathf.Abs(info.point.y - transform.TransformPoint(_vertices[i]).y); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; if (Input.GetKey(KeyCode.RightArrow)) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; { &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; float outer = max - v_xz.magnitude; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; _vertices[i] += v_xz.normalized * Mathf.Min(0.01f * Mathf.Cos(((dif / 5 * Height) * Mathf.PI) / 2), outer); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; } &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; else if (Input.GetKey(KeyCode.LeftArrow)) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; { &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; float inner = v_xz.magnitude - min; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; _vertices[i] -= v_xz.normalized * Mathf.Min(0.01f * Mathf.Cos(((dif / 5 * Height) * Mathf.PI) / 2), inner); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; } &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; //Y轴变换 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; float scale_y = transform.localScale.y; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; if (Input.GetKey(KeyCode.UpArrow)) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; { &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; scale_y = Mathf.Min(transform.localScale.y + 0.000001f, 2.0f); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; } &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; else if (Input.GetKey(KeyCode.DownArrow)) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; { &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; scale_y = Mathf.Max(transform.localScale.y - 0.000001f, 0.3f); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;} &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; transform.localScale = new Vector3(transform.localScale.x, scale_y, transform.localScale.z); &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; } &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; mesh.vertices = _vertices; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; mesh.RecalculateBounds(); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; mesh.RecalculateNormals(); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; meshFilter.mesh = mesh; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; meshCollider.sharedMesh = mesh; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; } &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; } &nbsp;&nbsp;&nbsp; } } &nbsp; //计算时就把顶点坐标系转换为自身坐标系,求得向量后再转换为世界坐标系 &nbsp;&nbsp;&nbsp; Vector3 v_xz = transform.TransformDirection(transform.InverseTransformPoint(_vertices[i]) - transform.InverseTransformPoint(new Vector3(0, _vertices[i].y, 0))); &nbsp; //3.法线平均化 IEnumerator Print_Normals() &nbsp;&nbsp;&nbsp; { &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; for (int i = 0; i < meshFilter.mesh.vertices.Length; i++) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; {&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; if (i % 2 == 0) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; { &nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Debug.DrawRay(transform.TransformPoint(meshFilter.mesh.vertices[i]), transform.TransformDirection(meshFilter.mesh.normals[i] * 0.3f), Color.green, 1000f); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; } &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; else &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; { &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Debug.DrawRay(transform.TransformPoint(meshFilter.mesh.vertices[i]), transform.TransformDirection(meshFilter.mesh.normals[i] * 0.3f), Color.blue, 1000f); &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; } &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; yield return new WaitForSeconds(Time.deltaTime); &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; } &nbsp;&nbsp;&nbsp; } &nbsp; //回到项目上来。这段法线计算的代码就不放上来了,大致就是根据顶点在数组中的下标去判断位置是否相同,然后把该顶点的法线相加即可。大家自己构建Mesh时的顶点顺序可能会不太一样。 以上代码是否有问题,请帮我完善
最新发布
08-30
<think> 我们正在处理一个Unity项目,需要完善Mesh构建、动态改变形状和法线平均化的代码。 根据引用[1]和引用[2]: - 创建Mesh需要设置顶点、三角形、法线等。 - 法线信息是一个Vector3数组,每个顶点对应一个法线向量。 - 如果希望网格看起来平滑,需要对相邻面的法线进行平均(即平滑法线)。 - 引用[2]提到可以使用mesh.RecalculateNormals()自动计算法线,但它是根据相邻三角面计算平均法线,从而实现平滑效果。 然而,用户提到了“动态改变形状”和“法线平均化”,因此我们需要: 1. 动态更新Mesh的顶点(改变形状)。 2. 在顶点改变后,重新计算法线。我们可以使用RecalculateNormals(),但有时可能需要自定义法线计算(例如,实现特定的平均化方式)。 引用[2]中提到了一个偷懒的方法:mesh.RecalculateNormals(),它会自动计算每个顶点的法线(基于共享该顶点的所有三角面的法线平均值,并归一化)。 但如果我们想要自己计算法线(比如为了更精确的控制),则需要: - 首先计算每个三角面的法线(通过叉乘得到)。 - 然后对于每个顶点,收集所有共享该顶点的三角面的法线,求平均(并归一化)作为该顶点的法线。 考虑到动态改变形状,我们可能需要频繁更新法线,因此使用Unity内置的RecalculateNormals()可能是高效且方便的选择。但如果需要自定义(例如忽略某些面),则需要手动计算。 根据要求,我们提供两种方案: 方案1:使用Unity内置的RecalculateNormals()(简单,适用于一般平滑效果)。 方案2:手动计算平均法线(更灵活,但代码较多)。 我们先构建一个基本的Mesh构建类,包含: - 顶点数组(Vector3[] vertices) - 三角形数组(int[] triangles) - 法线数组(Vector3[] normals) - 初始化时构建网格并设置MeshFilter和MeshRenderer。 然后提供动态改变顶点的方法,并在改变后更新法线。 步骤: 1. 创建Mesh对象并设置顶点和三角形。 2. 计算法线(使用内置方法或自定义方法)。 3. 将网格应用于MeshFilter。 注意:动态改变形状时,我们可能会修改顶点数组,然后重新计算法线。 引用[3]提到法线对于渲染、照明等非常重要,所以正确设置法线很关键。 下面是一个示例类,包含: - 初始化网格(例如生成一个平面) - 修改顶点的方法 - 重新计算法线(可选择内置或自定义) 根据引用[2],我们也可以选择手动计算法线。这里我们提供两种方式,并通过一个标志位选择。 注意:手动计算法线需要遍历三角形,计算每个面的法线,然后对每个顶点的所有相邻面的法线求平均。 由于用户要求动态改变形状,我们假设顶点位置会变化,但拓扑结构(三角形连接)不变?或者也可能改变?这里我们先假设三角形索引不变,只有顶点位置变化。 如果拓扑结构也动态改变,那么三角形数组也需要更新,但法线计算同理。 代码结构: ```csharp using UnityEngine; [RequireComponent(typeof(MeshFilter), typeof(MeshRenderer))] public class DynamicMesh : MonoBehaviour { private Mesh mesh; private Vector3[] vertices; private int[] triangles; private Vector3[] normals; // 是否使用Unity内置的法线计算(否则使用自定义计算) public bool useUnityRecalculateNormals = true; void Start() { GetComponent<MeshFilter>().mesh = mesh = new Mesh(); mesh.name = "Dynamic Mesh"; // 初始化网格数据(例如创建一个平面) GenerateInitialMesh(); UpdateMesh(); } // 生成初始网格(示例:一个四边形平面) private void GenerateInitialMesh() { // 4个顶点 vertices = new Vector3[4]; vertices[0] = new Vector3(0, 0, 0); vertices[1] = new Vector3(1, 0, 0); vertices[2] = new Vector3(0, 1, 0); vertices[3] = new Vector3(1, 1, 0); // 两个三角形(顺时针或逆时针,注意Unity是顺时针为正面) triangles = new int[] { 0, 2, 1, 1, 2, 3 }; // 法线数组初始化为零,后面会计算 normals = new Vector3[4]; } // 更新网格(在修改顶点后调用) public void UpdateMesh() { mesh.Clear(); mesh.vertices = vertices; mesh.triangles = triangles; // 计算法线 if (useUnityRecalculateNormals) { mesh.RecalculateNormals(); // 从mesh中取回计算后的法线(如果我们后续需要访问) normals = mesh.normals; } else { normals = CalculateNormals(); mesh.normals = normals; } // 如果需要,也可以重新计算切线等 } // 自定义法线计算:计算每个顶点的法线(通过相邻面的平均) private Vector3[] CalculateNormals() { // 初始化法线数组(每个顶点一个法线,初始为Vector3.zero) Vector3[] vertexNormals = new Vector3[vertices.Length]; // 遍历每个三角形(每3个索引一个三角形) for (int i = 0; i < triangles.Length; i += 3) { int index0 = triangles[i]; int index1 = triangles[i + 1]; int index2 = triangles[i + 2]; Vector3 v0 = vertices[index0]; Vector3 v1 = vertices[index1]; Vector3 v2 = vertices[index2]; // 计算三角形面的法线(叉乘) Vector3 normal = Vector3.Cross(v1 - v0, v2 - v0).normalized; // 将这个面的法线加到三个顶点的法线上 vertexNormals[index0] += normal; vertexNormals[index1] += normal; vertexNormals[index2] += normal; } // 归一化每个顶点的法线(得到平均方向) for (int i = 0; i < vertexNormals.Length; i++) { vertexNormals[i] = vertexNormals[i].normalized; } return vertexNormals; } // 示例:动态改变顶点位置(例如根据噪声或物理模拟) public void ModifyVertices() { // 这里只是一个示例:随机移动顶点(实际应用中可能是更复杂的形变) for (int i = 0; i < vertices.Length; i++) { vertices[i] += Random.insideUnitSphere * 0.1f; } // 更新网格 UpdateMesh(); } // 在Inspector中提供一个按钮来测试修改顶点 [ContextMenu("Modify Vertices")] public void ModifyVerticesContextMenu() { ModifyVertices(); } } ``` 说明: - 在Start中,我们创建初始网格(一个平面四边形),然后调用UpdateMesh来设置网格并计算法线。 - 我们提供了两种计算法线的方式:使用Unity内置的RecalculateNormals(默认)或自定义的CalculateNormals方法(遍历三角形,计算每个面的法线并累加到顶点,然后归一化)。 - 动态修改顶点后,调用UpdateMesh更新网格和法线。 注意: - 自定义法线计算中,我们假设网格是连续的(即共享顶点)。如果网格中有不连续的顶点(例如硬边),那么需要特殊处理(比如复制顶点),但这里我们只考虑平滑网格。 - 内置的RecalculateNormals方法也会考虑顶点共享的情况,所以对于平滑网格,使用内置方法即可。 用户可以根据需求选择使用内置方法还是自定义方法。如果希望实现硬边(不平滑),可能需要不同的顶点法线(例如,在硬边处,同一个位置有多个顶点,每个顶点属于不同的面,法线不同)。 关于动态改变形状:这里只是简单示例(随机移动顶点),实际应用中可能是根据物理模拟、函数变形等。 请根据实际项目需求调整初始网格的生成和顶点修改逻辑。 参考引用: [^1]: 引用1说明需要提供法线数组,并提到平滑法线需要平均相邻面的法线。 [^2]: 引用2提到可以使用mesh.RecalculateNormals()自动计算法线,并解释了其原理(计算与顶点相连的三角面法线的平均值并归一化)。 [^3]: 引用3强调了法线在渲染和光照中的重要性。 完善点: - 我们实现了动态改变顶点后更新法线(内置方法或自定义方法)。 - 我们提供了自定义法线计算的代码,以便用户需要更精细控制时使用。 如果用户需要硬边(非平滑)的效果,则需要复制顶点(使每个三角形使用独立的顶点),然后为这些顶点分别设置法线(即三角形面的法线)。但这不是当前问题的重点。 因此,以上代码应该能够满足用户对动态改变形状和法线平均化的需求。 §§相关问题§§ 1. 在Unity中,如何为具有硬边的网格计算法线? 2. 动态修改网格顶点时,如何优化性能? 3. 除了法线,动态网格还需要更新哪些属性以保证正确渲染? </think> 以下是针对 Unity 项目中 Mesh 构建、动态变形和法线平均化的代码检查与完善方案,整合了引用中的关键信息: ### 核心代码实现(含注释说明) ```csharp using UnityEngine; [RequireComponent(typeof(MeshFilter), typeof(MeshRenderer))] public class DynamicMesh : MonoBehaviour { private Mesh mesh; private Vector3[] vertices; private Vector3[] normals; void Start() { // 初始化网格组件 GetComponent<MeshFilter>().mesh = mesh = new Mesh(); mesh.name = "Dynamic Mesh"; // 1. 基础网格构建(示例:平面) GenerateBaseMesh(); // 2. 动态更新顶点位置(示例:正弦波动) InvokeRepeating(nameof(UpdateShape), 0.1f, 0.1f); } // 生成基础网格(含UV和法线初始化) private void GenerateBaseMesh() { // 顶点设置(4个顶点构成平面) vertices = new Vector3[4] { new Vector3(0, 0, 0), new Vector3(1, 0, 0), new Vector3(0, 1, 0), new Vector3(1, 1, 0) }; // 三角形索引(两个三角面) int[] triangles = new int[6] { 0, 2, 1, // 第一个三角形 1, 2, 3 // 第二个三角形 }; // UV坐标(必须设置) Vector2[] uv = new Vector2[4] { new Vector2(0, 0), new Vector2(1, 0), new Vector2(0, 1), new Vector2(1, 1) }; mesh.vertices = vertices; mesh.triangles = triangles; mesh.uv = uv; // 3. 法线计算(平滑平均) CalculateSmoothNormals(); // 使用自定义平滑法线 // mesh.RecalculateNormals(); // 或使用Unity内置方法[^2] } //=== 关键完善点1:平滑法线计算 === private void CalculateSmoothNormals() { // 初始化法线数组(与顶点一一对应)[^1] normals = new Vector3[vertices.Length]; // 步骤1:计算每个三角面的法线 Vector3[] faceNormals = new Vector3[mesh.triangles.Length / 3]; for (int i = 0; i < mesh.triangles.Length; i += 3) { int idx0 = mesh.triangles[i]; int idx1 = mesh.triangles[i + 1]; int idx2 = mesh.triangles[i + 2]; Vector3 v1 = vertices[idx1] - vertices[idx0]; Vector3 v2 = vertices[idx2] - vertices[idx0]; faceNormals[i / 3] = Vector3.Cross(v1, v2).normalized; } // 步骤2:顶点法线平均化[^1] for (int i = 0; i < vertices.Length; i++) { Vector3 normalSum = Vector3.zero; int count = 0; // 遍历所有三角形,找到共享当前顶点的面 for (int j = 0; j < mesh.triangles.Length; j++) { if (mesh.triangles[j] == i) { int faceIndex = j / 3; normalSum += faceNormals[faceIndex]; count++; } } // 计算平均值并单位化[^3] normals[i] = (count > 0) ? (normalSum / count).normalized : Vector3.up; } mesh.normals = normals; // 应用法线 } //=== 关键完善点2:动态改变形状 === private void UpdateShape() { // 动态修改顶点位置(示例:Y轴正弦波动) for (int i = 0; i < vertices.Length; i++) { float wave = Mathf.Sin(Time.time + i * 0.5f); vertices[i].y = wave * 0.2f; // 振幅控制 } mesh.vertices = vertices; // 更新顶点 mesh.RecalculateBounds(); // 重计算边界 // 动态更新法线(必须执行!) CalculateSmoothNormals(); // 若使用内置方法:mesh.RecalculateNormals()[^2] } } ``` ### 关键完善说明 1. **法线平均化优化** - 手动实现相邻面法线加权平均(`CalculateSmoothNormals`方法) - 替代方案:直接调用 `mesh.RecalculateNormals()`(Unity 内置的面法线平均算法)[^2] - **注意**:两种方法都要求顶点位置更新后**必须重新计算法线**,否则光照错误 2. **动态变形要点** - 修改 `vertices` 数组后需重新赋值给 `mesh.vertices` - 必须调用 `RecalculateBounds()` 更新碰撞检测范围 - UV 坐标在初始化后无需修改(除非做纹理动画) 3. **性能优化** ```csharp // 在UpdateShape()开头添加(减少GC) mesh.MarkDynamic(); // 声明为动态网格[^2] // 避免每帧创建新数组 vertices = mesh.vertices; // 直接获取引用 ``` 4. **探针与光照兼容** ```csharp // 确保MeshRenderer正确响应光照 GetComponent<MeshRenderer>().lightProbeUsage = LightProbeUsage.BlendProbes; GetComponent<MeshRenderer>().reflectionProbeUsage = ReflectionProbeUsage.BlendProbes; ``` ### 验证要点 1. **法线方向验证** - 在Scene视图开启 **Face Culling**,确认法线朝向一致 - 使用Debug.DrawRay绘制顶点法线辅助检查 2. **平滑度测试** - 对比 `mesh.RecalculateNormals()` 和自定义算法的平滑效果 - 硬边处理需分割顶点(非平均法线) > 引用说明:[^1] 手动计算法线需顶点与法线一一对应;[^2] `RecalculateNormals()` 使用面法线平均值;[^3] 单位化法线保证光照计算正确。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值