HDU-5475 An easy problem(模拟||(倒着计算+线段树))

本文介绍了一道关于计算器操作的编程题,包括题目描述、输入输出格式及样例。通过两种解题思路对比,详细解释了如何高效地处理乘除操作,并给出具体代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

An easy problem

Time Limit: 8000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)


Problem Description
One day, a useless calculator was being built by Kuros. Let's assume that number X is showed on the screen of calculator. At first, X = 1. This calculator only supports two types of operation.
1. multiply X with a number.
2. divide X with a number which was multiplied before.
After each operation, please output the number X modulo M.
 

Input
The first line is an integer T(1T10), indicating the number of test cases.
For each test case, the first line are two integers Q and M. Q is the number of operations and M is described above. (1Q105,1M109)
The next Q lines, each line starts with an integer x indicating the type of operation.
if x is 1, an integer y is given, indicating the number to multiply. (0<y109)
if x is 2, an integer n is given. The calculator will divide the number which is multiplied in the nth operation. (the nth operation must be a type 1 operation.)

It's guaranteed that in type 2 operation, there won't be two same n.
 

Output
For each test case, the first line, please output "Case #x:" and x is the id of the test cases starting from 1.
Then Q lines follow, each line please output an answer showed by the calculator.
 

Sample Input
1 10 1000000000 1 2 2 1 1 2 1 10 2 3 2 4 1 6 1 7 1 12 2 7
 

Sample Output
Case #1: 2 1 2 20 10 1 6 42 504 84

题目大意:初始时 x=1,每次有2种操作:

                    操作 1:给x乘以一个数

                    操作 2:给x除以第n次操作出现的数(n只出现1次)

                    对每次操作输出 x%mod;


①刚开始就想到直接计算,但认为会超时就直接放弃了,没想到直接计算(乘法直接乘即可;除法时先标记除法,然后重新计算即可)就能过,大概3400ms;

②后来听过大神讲解,了解到:有些数一定会乘,计算为tmp[i],然后从后计算除法除以的数n[i],则ans[i]=(tmp[i]*n[i])%mod;,大概2300ms;

#include <cstdio>
#define LL long long

using namespace std;

int n[100005],ope[100005],tmp[100005],ans[100005],x,mod;
bool flg[100005],mul[100005];//flg表示当前操作是否为操作1;mul表示当前数是否一定会被乘

int main() {
    int T,kase=0,Q,t,i,j;
    scanf("%d",&T);
    while(kase<T) {
        printf("Case #%d:\n",++kase);
        scanf("%d%d",&Q,&mod);
        tmp[0]=1;
        for(i=1;i<=Q;++i) {
            scanf("%d%d",&t,ope+i);
            n[i]=1;
            if(t==1)
                mul[i]=flg[i]=true;
            else
                flg[i]=mul[i]=mul[ope[i]]=false;
        }
        for(i=1;i<=Q;++i) {
            if(mul[i])
                tmp[i]=((LL)tmp[i-1]*ope[i])%mod;
            else
                tmp[i]=tmp[i-1];
        }
        for(i=Q;i;--i) {
            if(!flg[i]) {
                x=ope[ope[i]];
                for(j=ope[i];j<i;++j)//ope[i]~i-1的n[j]均乘以x
                    n[j]=((LL)n[j]*x)%mod;
            }
            ans[i]=((LL)n[i]*tmp[i])%mod;
        }
        for(i=1;i<=Q;++i)
            printf("%d\n",ans[i]);
    }
    return 0;
}

③大神自己用线段树做的,大概1500ms。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值