前言
最近面临毕业就业,在复习数据结构与算法,为了更好地掌握,加深印象,所以决定写一些博客来知识复现。
温馨提示:这篇博客可能不适合刚学数据结构的新手。
算法的简单介绍
- 黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。取其前三位 数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个神 奇的数字,会带来意向不大的效果。
- 斐波那契数列{1,1,2,3,5,8,13,21,34,55}发现斐波那契数列的两个相邻数的比例,无限接近黄金分割值 0.618
- 斐波那契查找原理与前两种相似,仅仅改变了中间结点(mid)的位置,mid 不再是中间或插值得到,而是位 于黄金分割点附近,即
mid=low+F(k-1)-1(F 代表斐波那契数列),如下图所示

代码实现
package sjjg;
import java.util.Arrays;
public class FibonacciSearch {
public static void main(String[] args) {
// TODO Auto-generated method stub
int[] arr = { 1, 8, 10, 89, 1000, 1234 };
System.out.println("index=" + fibSearch(arr, 8));// 0
}
// 因为后面我们mid=low+F(k-1)-1,需要使用到斐波那契数列,因此我们需要先获取到一个斐波那契数列
// 非递归方法得到一个斐波那契数列
public static int[] fib() {
int maxSize = 20;
int[] f = new int[maxSize];
f[0] = 1;
f[1] = 1;
for (int i = 2; i < maxSize; i++) {
f[i] = f[i - 1] + f[i - 2];
}
return f;
}
/**
* 功能:斐波那契查找算法
* @param a 数组
* @param key 我们需要查找的关键码(值)
* @return 返回对应的下标,如果没有-1
*/
public static int fibSearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;
int k = 0; // 表示斐波那契分割数值的下标
int mid = 0; // 存放mid值
int f[] = fib(); // 获取到斐波那契数列
// 获取到斐波那契分割数值的下标
while (high > f[k] - 1) {
k++;
}
// 因为 f[k] 值 可能大于 a 的 长度,因此我们需要使用Arrays类,构造一个新的数组,并指向temp[]
// 不足的部分会使用0填充
int[] temp = Arrays.copyOf(a, f[k]);
// 实际上需求使用a数组最后的数填充 temp
// 举例:
// temp = {1,8, 10, 89, 1000, 1234, 0, 0} => {1,8, 10, 89, 1000, 1234, 1234,
// 1234,}
for (int i = high + 1; i < temp.length; i++) {
temp[i] = a[high];
}
// 使用while来循环处理,找到我们的数 key
while (low <= high) { // 只要这个条件满足,就可以找
mid = low + f[k - 1] - 1;
if (key < temp[mid]) { // 我们应该继续向数组的前面查找(左边)
high = mid - 1;
// 为甚是 k--
// 说明
// 1. 全部元素 = 前面的元素 + 后边元素
// 2. f[k] = f[k-1] + f[k-2]
// 因为 前面有 f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]
// 即 在 f[k-1] 的前面继续查找 k--
// 即下次循环 mid = f[k-1-1]-1
k--;
} else if (key > temp[mid]) { // 我们应该继续向数组的后面查找(右边)
low = mid + 1;
// 为什么是k -=2
// 说明
// 1. 全部元素 = 前面的元素 + 后边元素
// 2. f[k] = f[k-1] + f[k-2]
// 3. 因为后面我们有f[k-2] 所以可以继续拆分 f[k-1] = f[k-3] + f[k-4]
// 4. 即在f[k-2] 的前面进行查找 k -=2
// 5. 即下次循环 mid = f[k - 1 - 2] - 1
k -= 2;
} else { // 找到
// 需要确定,返回的是哪个下标
if (mid <= high) {
return mid;
} else {
return high;
}
}
}
return -1;
}
}
结束语
欢迎访问我的博客,一起学习,一起进步!
2575

被折叠的 条评论
为什么被折叠?



