Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
For example, given s = "aab",
Return 1 since the palindrome partitioning ["aa","b"] could
be produced using 1 cut.
这题可以采用动态规划来解,因为只需要返回数字。
利用一个dp数组来表示从需要多少分割,一个p[i][j]表示i 到j 是否为palindrome..
代码如下
class Solution:
# @param s, a string
# @return an integer
def minCut(self, s):
dp=[0 for i in range(len(s)+1)]
p=[[False for i in range(len(s))] for j in range(len(s))]
for i in range(len(s)+1):
dp[i]=len(s)-i
for i in reversed(range(len(s))):
for j in range(i,len(s)):
if s[i]==s[j] and (j-i<2 or p[i+1][j-1]==True):
p[i][j]=True
dp[i]=min(dp[i],dp[j+1]+1)
return dp[0]-1
本文介绍了一种使用动态规划解决字符串最小回文分割的方法。通过构建dp数组记录最少分割次数及p[i][j]判断子串是否为回文,实现对任意给定字符串s的有效分割。
358

被折叠的 条评论
为什么被折叠?



