1.摘要:
关于LIS部分,本篇博客讲一下LIS的概念定义和理解,以及求LIS的三种方法,分别是O(n^2)的DP,O(nlogn)的二分+贪心法,以及O(nlogn)的树状数组优化的DP,最后附上几道非常经典的LIS的例题及分析。
2.LIS的定义:
最长上升子序列(Longest Increasing Subsequence),简称LIS,也有些情况求的是最长非降序子序列,二者区别就是序列中是否可以有相等的数。假设我们有一个序列 b i,当b1 < b2 < … < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, …, aN),我们也可以从中得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N,但必须按照从前到后的顺序。比如,对于序列(1, 7, 3, 5, 9, 4, 8),我们就会得到一些上升的子序列,如(1, 7, 9), (3, 4, 8), (1, 3, 5, 8)等等,而这些子序列中最长的(如子序列(1, 3, 5, 8) ),它的长度为4,因此该序列的最长上升子序列长度为4。
首先需要知道,子串和子序列的概念,我们以字符子串和字符子序列为例,更为形象,也能顺带着理解字符的子串和子序列:
(1)字符子串指的是字符串中连续的n个字符,如abcdefg中,ab,cde,fg等都属于它的字串。
(2)字符子序列指的是字符串中不一定连续但先后顺序一致的n个字符,即可以去掉字符串中的部分字符,但不可改变其前后顺序。如abcdefg中,acdg,bdf属于它的子序列,而bac,dbfg则不是,因为它们与字符串的字符顺序不一致。
知道了这个,数值的子序列就很好明白了,即用数组成的子序列。这样的话,最长上升子序列也很容易明白了,归根结底还是子序列,然后子序列中,按照上升顺序排列的最长的就是我们最长上升子序列了,这样听来是不是就很容易明白啦~
还有一个非常重要的问题:请大家用集合的观点来理解这些概念,子序列、公共子序列以及最长公共子序列都不唯一,但很显然,对于固定的数组,虽然LIS序列不一定唯一,但LIS的长度是唯一的。再拿我们刚刚举的栗子来讲,给出序列 ( 1, 7, 3, 5, 9, 4, 8),易得最长上升子序列长度为4,这是确定的,但序列可以为 ( 1, 3, 5, 8 ), 也可以为 ( 1, 3, 5, 9 )。
3.LIS长度的求解方法:
那么这个到底该怎么求呢?
这里详细介绍一下求LIS的三种方法,分别是O(n^2)的DP,O(nlogn)的二分+贪心法,以及O(nlogn)的树状数组优化的DP。
解法1:动态规划:
我们都知道,动态规划的一个特点就是当前解可以由上一个阶段的解推出, 由此,把我们要求的问题简化成一个更小的子问题。子问题具有相同的求解方式,只不过是规模小了而已。最长上升子序列就符合这一特性。我们要求n个数的最长上升子序列,可以求前n-1个数的最长上升子序列,再跟第n个数进行判断。求前n-1个数的最长上升子序列,可以通过求前n-2个数的最长上升子序列……直到求前1个数的最长上升子序列,此时LIS当然为1。
让我们举个例子:求 2 7 1 5 6 4 3 8 9 的最长上升子序列。我们定义d(i) (i∈[1,n])来表示前i个数以A[i]结尾的最长上升子序列长度。
前1个数 d(1)=1 子序列为2;
前2个数 7前面有2小于7 d(2)=d(1)+1=2 子序列为2 7
前3个数 在1前面没有比1更小的,1自身组成长度为1的子序列 d(3)=1 子序列为1
前4个数 5前面有2小于5 d(4)=d(1)+1=2 子序列为2 5
前5个数 6前面有2 5小于6 d(5)=d(4)+1=3 子序列为2 5 6
前6个数 4前面有2小于4 d(6)=d(1)+1=2 子序列为2 4
前7个数 3前面有2小于3 d(3)=d(1)+1=2 子序列为2 3
前8个数 8前面有2 5 6小于8 d(8)=d(5)+1=4 子序列为2 5 6 8
前9个数 9前面有2 5 6 8小于9 d(9)=d(8)+1=5 子序列为2 5 6 8 9
d(i)=max{d(1),d(2),……,d(i)} 我们可以看出这9个数的LIS为d(9)=5
总结一下,d(i)就是找以A[i]结尾的,在A[i]之前的最长上升子序列+1,当A[i]之前没有比A[i]更小的数时,d(i)=1。所有的d(i)里面最大的那个就是最长上升子序列。其实说的通俗点,就是每次都向前找比它小的数和比它大的数的位置,将第一个比它大的替换掉,这样操作虽然LIS序列的具体数字可能会变,但是很明显LIS长度还是不变的,因为只是把数替换掉了,并没有改变增加或者减少长度。但是我们通过这种方式是无法求出最长上升子序列具体是什么的,这点和最长公共子序列不同。
状态设计:F [ i ] 代表以 A [ i ] 结尾的 LIS 的长度
状态转移:F [ i ] = max { F [ j ] + 1 ,F [ i ] } (1 <= j < i,A[ j ] < A[ i ])
边界处理:F [ i ] = 1 (1 <= i <= n)
时间复杂度:O (n^2)
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn = 103, INF = 0x7f7f7f7f;
int a[maxn], f[maxn];
int n,ans = -INF;
int main()
{
scanf("%d", &n);
for(int i=1; i<=n; i++)
{
scanf("%d", &a[i]);
f[i] = 1;
}
for(int i=1; i<=n; i++)
for(int j=1; j<i; j++)
if(a[j] < a[i])
f[i] = max(f[i], f[j]+1);
for(int i=1; i<=n; i++)
ans = max(ans, f[i]);
printf("%d\n", ans);
return 0;
}
解法2:贪心+二分:
思路:
新建一个 low 数组,low [ i ]表示长度为i的LIS结尾元素的最小值。对于一个上升子序列,显然其结尾元素越小,越有利于在后面接其他的元素,也就越可能变得更长。因此,我们只需要维护 low 数组,对于每一个a[ i ],如果a[ i ] > low [当前最长的LIS长度],就把 a [ i ]接到当前最长的LIS后面,即low [++当前最长的LIS长度] = a [ i ]。
那么,怎么维护 low 数组呢?
对于每一个a [ i ],如果a [ i ]能接到 LIS 后面,就接上去;否则,就用 a [ i ] 去更新 low 数组。具体方法是,在low数组中找到第一个大于等于a [ i ]的元素low [ j ],用a [ i ]去更新 low [ j ]。如果从头到尾扫一遍 low 数组的话,时间复杂度仍是O(n^2)。我们注意到 low 数组内部一定是单调不降的,所有我们可以二分 low 数组,找出第一个大于等于a[ i ]的元素。二分一次 low 数组的时间复杂度的O(logn),所以总的时间复杂度是O(nlogn)。
我们再举一个例子:有以下序列A[ ] = 3 1 2 6 4 5 10 7,求LIS长度。
我们定义一个B[ i ]来储存可能的排序序列,len 为LIS长度。我们依次把A[ i ]有序地放进B[ i ]里。
(为了方便,i的范围就从1~n表示第i个数)
A[1] = 3,把3放进B[1],此时B[1] = 3,此时len = 1,最小末尾是3
A[2] = 1,因为1比3小,所以可以把B[1]中的3替换为1,此时B[1] = 1,此时len = 1,最小末尾是1
A[3] = 2,2大于1,就把2放进B[2] = 2,此时B[ ]={1,2},len = 2
同理,A[4]=6,把6放进B[3] = 6,B[ ]={1,2,6},len = 3
A[5]=4,4在2和6之间,比6小,可以把B[3]替换为4,B[ ] = {1,2,4},len = 3
A[6] = 5,B[4] = 5,B[ ] = {1,2,4,5},len = 4
A[7] = 10,B[5] = 10,B[ ] = {1,2,4,5,10},len = 5
A[8] = 7,7在5和10之间,比10小,可以把B[5]替换为7,B[ ] = {1,2,4,5,7},len = 5
最终我们得出LIS长度为5。但是,但是!!这里的1 2 4 5 7很明显并不是正确的最长上升子序列。是的,B序列并不表示最长上升子序列,它只表示相应最长子序列长度的排好序的最小序列。这有什么用呢?我

本文深入探讨最长上升子序列(LIS)的概念及其求解方法,包括O(n^2)的动态规划、O(nlogn)的贪心+二分法以及树状数组优化的动态规划。通过实例解析,帮助读者理解LIS的计算过程。
最低0.47元/天 解锁文章
851

被折叠的 条评论
为什么被折叠?



