Maching Learning

本文详细介绍了机器学习的主要类型,包括有监督学习、无监督学习、半监督学习和强化学习,探讨了在线学习与批量学习的区别,以及实例基于模型的学习方式。文章还深入解析了模式识别在机器学习中的应用,如分类、回归、序列预测和决策制定,并概述了训练阶段与测试阶段的关键过程,以及解决泛化问题的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Machine learning system type

机器学习的类型划分主要基于以下几点:

  • Whether or not they are trained with human supervision
    • supervised: regression prediction and classification(回归预测和分类)
    • unsupervised:clustering(聚类)
    • semisupervised
    • Reinforcement Learning
  • Whether or not they can learn incrementally on the fly
    • online
    • batch learning
  • Whether they work by simply comparing new data points to known data points, or instead detect patterns in the training data and build a predictive model, much like scientists do
    • instance-based
    • model-based learning

Reference Link:https://blog.youkuaiyun.com/huang1024rui/article/details/49735113

Pattern Recognization Machine learning

what does PRML do?

  • Classification: Assign each input to one of a given set of classes
  • Regression: assign a real-valued output to each input
  • Sequence Prediction: Do classification or regressioin to each member of a sequence of values
  • Decision making: assign a series of actions to achieve the best overall reward

Two stage of machine learning

  • Training of learning phase
    • Training data
    • determing f(x)
  • Test phase
    • Testing: classification/predication/decoding…
    • Generalization problem

Key Element of Machine learning

  • Type of machine learning
    • example : blind source separation type is ??
  • Data
    • input (observation feature)
    • output(label)\
  • model
    • Parametric or non-parametric
    • Form of model (what are the parameter)
  • Criterion
    • what’s the meaning of being optimal

Generative VS Discriminative

About the difference, may the link:
https://blog.youkuaiyun.com/zouxy09/article/details/8195017 will help.

Training Model

Linear

Gradient Descent(GD)

  • batch GD
  • Mini-batch GD
  • Stochastic GD

这里写图片描述

Polynomial Regression

SVM(support vector machine)

svm

Decision Tree

Ensemble learning and Random Forests

Neural network

Activate function

这里写图片描述

DNN(deep neural nets)

CNN(convolutional neural nets)

pros:

  • minimize model parameter numbers
  • enhance generilize ability: able to learn the intrinstic of data, and can be transfer the ablity to new group of data

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值