11. 盛最多水的容器

在这里插入图片描述
思路
一个容器所能盛的最大水容量取决于构成这个容器最短那条线的高度

class Solution(object):
    def maxArea(self, height):
        """
        :type height: List[int]
        :rtype: int
        """
        # 移动最短原因:移动最大值,区间内任一区间的面积都不会比大区间大  
        # 移动大值,宽度减小,此时最大值若大于L,则面积小,若小于,则长、宽都变小
        maxs = 0
        l = 0
        r = len(height)-1
        while l<r:
            areas = min(height[l],height[r])*(r-l)
            maxs = max(maxs,areas)
            if height[l]<=height[r]:
                l+=1
            else:
                r-=1
        return maxs

题目中的"最多容器"实际上是一个著名的问题,也被称为"最多容器"问题。该问题可以用贪心算法来解决。 首先,我们定义一个指针对数组进行遍历。初始时,左指针指向数组的第一个元素,右指针指向数组的最后一个元素。我们计算当前指针所指向的两个元素构成的容器的面积。容器的面积是由两个因素决定的,即两个指针之间的距离和指针所指向的较小的元素的高度。我们将这个面积记录下来,并与之前的最大面积进行比较,保留最大的面积值。 接下来,我们要决定移动哪个指针。我们移动指针的原则是,每次移动指向较小元素的指针,这样才有可能找到更高的柱子,进而获得更大的面积。假设当前左指针指向的元素较小,那么我们将左指针向右移动一位。否则,如果右指针指向的元素较小,我们将右指针向左移动一位。 重复上述的过程,直到两个指针相遇为止。最后得到的最大面积即为所求。 下面是用Python编写的解法代码: def maxArea(height): left = 0 right = len(height) - 1 maxArea = 0 while left < right: area = min(height[left], height[right]) * (right - left) maxArea = max(maxArea, area) if height[left] < height[right]: left += 1 else: right -= 1 return maxArea 这段代码的时间复杂度是O(n),其中n是数组的长度。因为我们只对整个数组进行了一次遍历。因此,该解法是一个高效解法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值