考研数二第十七讲 反常积分与反常积分之欧拉-泊松(Euler-Poisson)积分

反常积分是数学中的广义积分,包括无穷限和瑕积分两类。无穷限广义积分涉及对极限的处理,而瑕积分则需避开瑕点来求解。处理反常积分的关键是将积分转化为函数的极限问题,利用牛顿-莱布尼茨公式。欧拉-泊松积分是一个典型例子,它在概率论中有重要应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

反常积分

反常积分又叫广义积分,是对普通定积分的推广,指含有无穷上限/下限,或者被积函数含有瑕点的积分,前者称为无穷限广义积分,后者称为瑕积分(又称无界函数的反常积分)。

含有无穷上限/下限的反常积分

看到“无穷”这两个字,我们第一时间想到这玩意肯定跟极限有关系。但是转念一想,我们都是对函数求极限啊,怎么对积分求极限呢?

不要急。牛顿——莱布尼茨公式可是可以把积分转化为函数的。这样不就可以对把这类反常积分转化为函数的极限问题了吗。
在这里插入图片描述

含有瑕点的反常积分

瑕点就是瑕疵点,即不完美的点,意思就是这个点让积分看起来“不完美”了。不过在数学上,瑕点特指邻域内无界的点。

前面的含有无穷限的积分是因为“无穷”不是一个数,不能被代入牛顿——莱布尼茨公式。那么问题来了,为什么有瑕点的积分要被列为反常积分呢?
在这里插入图片描述
那么如何处理含有瑕点的积分呢?很简单,既然瑕点会影响积分的结果,那就想办法避开瑕点,但在避开瑕点的时候有不能影响积分的值。

那我们很自然的就可以想到可以靠无限逼近瑕点来实现在尽可能不影响结果的情况下避开瑕点。具体要从哪一侧逼近,要具体分析,去看从哪一侧逼近可以避开瑕点。

既然出现了“无限”一词,肯定又要用到极限了。具体的就不细说了,直接看例题。
在这里插入图片描述
我们学了两种反常积分,一种是含有无穷积分限的,另一种是含有瑕点的。解决这两种反常积分的方法都是利用极限。关键所在就是要把对积分的极限转化为对牛顿——莱布尼茨公式的极限。

广义积分是否收敛

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

欧拉-泊松积分

欧拉-泊松 积分,又叫概率积分,在概率论中有着重要的应用。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
记一个方法:τ(1)=1,τ(12)=π,τ(n+1)=n∗τ(n)\tau (1)=1 , \tau(\frac{1}{2})=\sqrt{π} ,\tau(n+1)=n*\tau(n)τ(1)=1,τ(21)=πτn+1=nτ(n)

∫0∞t12.e−tdt=τ(12+1)\int_{0}^{∞} t^{\frac{1}{2}}.e-^t dt=\tau(\frac{1}{2}+1)0t21.etdt=τ(21+1)=12\frac{1}{2}21* τ(12)\tau(\frac{1}{2})τ(21)=12\frac{1}{2}21* π\sqrt{π}π

好的,我可以为您解一下拉格朗日方程的推导过程,以一维情况为例。 假设一个质点在一维坐标系上运动,其位置用 $q$ 表示,时间用 $t$ 表示。该质点的运动可以用拉格朗日函数 $L(q, \dot{q}, t)$ 描述,其中 $\dot{q}=\frac{dq}{dt}$ 表示质点的速度。 为了推导欧拉-拉格朗日方程,我们首先需要定义一个重要的量,即作用量 $S$。作用量定义为 $$S = \int_{t_1}^{t_2} L(q, \dot{q}, t) dt$$ 其中 $t_1$ 和 $t_2$ 表示质点运动的起点和终点。作用量可以理解为一个积分,它是拉格朗日函数在时间 $t_1$ 到 $t_2$ 内的时间积分。 接下来,我们需要考虑如何对作用量进行变分。变分是一种数学操作,它类似于求导,但是是对函数进行微小的偏移,即对函数进行微小的扰动。对于一个作用量 $S$,其变分可以表示为 $$\delta S = S[q+\delta q] - S[q]$$ 其中 $\delta q$ 表示对 $q$ 进行微小的扰动。 现在我们来考虑如何对作用量进行变分。首先,我们将作用量中的积分拆开,得到 $$\delta S = \int_{t_1}^{t_2} \left( \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \right) dt$$ 其中第一个式子中的 $\frac{\partial L}{\partial q}$ 表示对 $L$ 关于 $q$ 的偏导数,第二个式子中的 $\frac{\partial L}{\partial \dot{q}}$ 表示对 $L$ 关于 $\dot{q}$ 的偏导数。 现在我们需要将 $\delta \dot{q}$ 转化为 $\delta q$。由于 $\dot{q}=\frac{dq}{dt}$,我们可以得到 $$\delta \dot{q} = \frac{d}{dt} \delta q$$ 将上式代入到 $\delta S$ 中,得到 $$\delta S = \int_{t_1}^{t_2} \left( \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \frac{d}{dt} \delta q \right) dt$$ 接下来,我们需要对第二个式子进行分部积分,得到 $$\delta S = \int_{t_1}^{t_2} \left( \frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} \right) \delta q dt + \left[ \frac{\partial L}{\partial \dot{q}} \delta q \right]_{t_1}^{t_2}$$ 现在我们需要对第二个式子进行讨论。由于质点在运动时,其位置 $q$ 和速度 $\dot{q}$ 在起点和终点上都是确定的,因此 $\delta q$ 在 $t_1$ 和 $t_2$ 处的值都应该为 0。因此,第二个式子等于 0。 最终,我们得到了欧拉-拉格朗日方程: $$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0$$ 这个方程描述了质点的运动。如果我们能够求出拉格朗日函数 $L$,那么欧拉-拉格朗日方程就可以帮助我们计算质点的运动。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员路同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值