算法工程师如何改进豆瓣电影 …

算法工程师针对豆瓣电影排行榜的问题提出改进方案,不再单纯依赖评分人数预设值。通过电影分类和持续关注度两个关键指标,实现更广泛的适应性和持久影响力。新算法考虑电影收藏曲线,以平衡新旧电影的排序,提高推荐的准确性和榜单的动态性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

豆瓣电影 07-04-2013

影迷们经常关注的电影排行榜里,一部由100人评出9.0分的电影,和一部由10000人评出8.0分的电影,谁应该排在前面呢?

这是我们算法工程师时常会面对的问题。

一些深度影迷可能会想到 imdb.com (互联网电影数据库) 所采用的贝叶斯公式[见附注],这个公式的思路就是通过每部影片的[评分人数]作为调节排序的杠杆:如果这部影片的评分人数低于一个预设值,则影片的最终得分会向全部影片的平均分拉低。

由此可见,平衡评分人数和得分,避免小众高分影片排前,是这个计算方法的出发点。可问题在于:调节整个榜单的排序主要依赖于这个[评分人数预设值]。如果它设置的很低,那么最终的排序结果,就是每部影片自身评分从高到低在排序;如果它被设置得过高,那么只适用高曝光率的影片。据说 imdb.com 的这个预设值从500一路调整到了25000,遗憾的是这个算法仍然无法很好的解决他们的问题。

我们看看国内电影市场的现状。2013年上映的《疯狂原始人》两个月内在豆瓣电影得到了13万人次的评分,而1974年上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

huangleijay

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值