Leetcode 213. House Robber II

本文介绍了一种解决House Robber II问题的动态规划方法,该问题要求在一个环形排列的房屋中,找出在不触动警报的情况下,能够抢夺的最大金额。通过分析,我们了解到由于首尾房屋相邻,故不能同时抢劫,因此问题分解为两个子问题,分别计算从第二个房屋开始到最后一个房屋,以及从第一个房屋到倒数第二个房屋的最大抢劫金额。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

213. House Robber II

题目

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

Example 1:

Input: [2,3,2]
Output: 3
Explanation: You cannot rob house 1 (money = 2) and then rob house 3 (money = 2),
             because they are adjacent houses.

Example 2:

Input: [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
             Total amount you can rob = 1 + 3 = 4.

解题思路

  • 因为第一个房子和最后一个房子相邻,因此房子1和房子n至少有一个没有抢劫。

    若不抢劫房子1,则求在房子2~n中选择房子抢劫能获得的金钱的最大值;

    若不抢劫房子n,则求在房子1~n-1中选择房子抢劫能获得的金钱的最大值。

    在上述两种情况中选择值大的一个即为本题的解。

  • 求在房子s~e中选择房子抢劫能获得的金钱的最大值时,可以采用动态规划的方法:

    dp[i]表示在房子s~s+i中选择房子抢劫能获得的金钱的最大值;

    初始时dp[0] = nums[s]; dp[1] = max(nums[s], nums[s+1]);

    状态转移方程:dp[i] = max(nums[s+i] + dp[i-2], dp[i-1]);

    最终求得的dp[e-s]就是在房子s~e中选择房子抢劫能获得的金钱的最大值。

代码如下:

class Solution {
public:
	int rob(vector<int>& nums) {
		int size = nums.size();
		if (size == 0) return 0;
		if (size == 1) return nums[0];
		if (size == 2) return max(nums[0], nums[1]);
		return max(robSub(nums, 0, size-2), robSub(nums, 1, size-1));	
	}

	int robSub(vector<int>& nums, int s, int e) {
		vector<int> dp(e-s+1);
		dp[0] = nums[s];
		dp[1] = max(nums[s], nums[s+1]);
		for (int i = 2; i <= e - s; i++) {
			dp[i] = max(nums[s+i] + dp[i-2], dp[i-1]);
		}
		return dp[e-s];
	}

};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值