62. Unique Paths
题目
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3
Output: 28
解题思路
采用动态规划的方法:
-
用
result[i][j]
表示从(0,0)到(i,j)的路径数。 -
由于只能向右和向下走,因此到第一行的某列和第一列的某行都只有一种走法,因此初始化为:
result[i][0] = 1; result[0][j] = 1;
-
其他情况时,可以从点(i-1, j)和点(i, j-1)到达点(i, j),因此状态转移函数为:
result[i][j] = result[i-1][j] + result[i][j-1];
-
最终得到的
result[m-1][n-1]
即为所求。 -
时间复杂度为O(mn)。
代码如下:
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> result(m, vector<int>(n, 1));
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
result[i][j] = result[i-1][j] + result[i][j-1];
}
}
return result[m-1][n-1];
}
};