Spark大数据处理讲课笔记2.1 初识Spark

这篇笔记介绍了Spark的组件,包括Spark Core、Spark SQL、Spark Streaming等,阐述了Spark的发展历程,特点如速度快、易用性、通用性,并讨论了Spark在数据科学和数据处理中的应用场景,同时对比了Spark与Hadoop的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

零、本节学习目标

  1. 了解什么是Spark计算框架
  2. 了解Spark计算框架的特点
  3. 了解Spark计算框架的应用场景
  4. 理解Spark框架与Hadoop框架的对比

一、Spark的概述

(一)Spark的组件

  • Spark在2013年加入Apache孵化器项目,之后获得迅猛的发展,并于2014年正式成为Apache软件基金会的顶级项目。Spark生态系统已经发展成为一个可应用于大规模数据处理的统一分析引擎,它是基于内存计算的大数据并行计算框架,适用于各种各样的分布式平台的系统。在Spark生态圈中包含了Spark SQL、Spark Streaming、GraphX、MLlib等组件。
    在这里插入图片描述
    在这里插入图片描述

1、Spark Core

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酒城译痴无心剑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值