【吴恩达机器学习笔记】Part2-Week3(上) 搭建机器学习系统(Applying Machine Learning)

1.1 本周内容——诊断程序(Diagnostic)

Diagnostic: A test that you run to gain insight into what is/isn’t working with a learning algorithm, to gain guidance into improving its performance.
Diagnostics can take time to implement but doing so can be a very good use of your time.

1.2 模型评估(Evaluating a model)

对于线性回归方法:
将数据集拆分成两部分:训练集(Training set)、测试集(Test set);
通过使代价函数最小化来训练参数:
J ( w ⃗ , b ) = min ⁡ w ⃗ , b [ 1 2 m t r a i n ∑ i = 1 m t r a i n ( f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ) 2 + λ 2 m t r a i n ∑ j = 1 n w j 2 ] J\left( {\vec w,b} \right) = \mathop {\min }\limits_{\vec w,b} \left[ {\frac{1}{ {2{m_{train}}}}\sum\limits_{i = 1}^{ {m_{train}}} { { {\left( { {f_{\vec w,b}}\left( { { {\vec x}^{\left( i \right)}}} \right) - {y^{\left( i \right)}}} \right)}^2} + \frac{\lambda }{ {2{m_{train}}}}\sum\limits_{j = 1}^n { {w_j}^2} } } \right] J(w ,b)=w ,bmin[2mtrain1i=1mtrain(fw ,b(x (i))y(i))2+2mtrainλj=1nwj2]
计算测试集的误差:
J t e s t ( w ⃗ , b ) = 1 2 m t e s t [ ∑ i = 1 m t e s t ( f w ⃗ , b ( x ⃗ t e s t ( i ) ) − y t e s t ( i ) ) 2 ] {J_{test}}\left( {\vec w,b} \right) = \frac{1}{ {2{m_{test}}}}\left[ {\sum\limits_{i = 1}^{ {m_{test}}} { { {\left( { {f_{\vec w,b}}\left( {\vec x_{test}^{\left( i \right)}} \right) - y_{test}^{\left( i \right)}} \right)}^2}} } \right] Jtest(w ,b)=2mtest1[i=1mtest(fw ,b(x test(i))ytest(i))2]
计算训练集的误差:
J t r a i n ( w ⃗ , b ) = 1 2 m t r a i n [ ∑ i = 1 m t r a i n ( f w ⃗ , b ( x ⃗ t r a i n ( i ) ) − y t r a i n ( i ) ) 2 ] {J_{train}}\left( {\vec w,b} \right) = \frac{1}{ {2{m_{train}}}}\left[ {\sum\limits_{i = 1}^{ {m_{train}}} { { {\left( { {f_{\vec w,b}}\left( {\vec x_{train}^{\left( i \right)}} \right) - y_{train}^{\left( i \right)}} \right)}^2}} } \right] Jtrain

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值