神经网络基本原理-4.3数据预处理(零中心化+归一化+PCA+白化)

本文详细介绍深度学习模型搭建过程,包括数据预处理、权重初始化、批量归一化、正则化等关键技术,并探讨不同损失函数对模型训练的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本节主要内容:

  • 设置数据和模型
    • 数据预处理
    • 权重初始化
    • 批量归一化(Batch Normalization)
    • 正则化(L2/L1/Maxnorm/Dropout)
  • 损失函数
  • 小结

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值