HDU4871 Shortest-path tree (树分治)

本文介绍了一种基于树分治的算法,用于解决特定类型的最短路径问题。具体而言,该算法在一个带权图中找到从根节点到其它各节点的最短路径,并确保这些路径的字典序最小。此外,还探讨了如何在生成的最短路径树中寻找包含特定数量节点的最长简单路径及其数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/**
题意:n个点m条边的图,以1为根节点生成一棵最短路树,要求1到每个点的最短路字典序最小。之后,
在最短路树上,找一个有k个点的简单路径,问这样的简单路径最长是多少,共有多少条。

思路:树分治,生成最短路树后,找出每一层的重心,k个点的最长路径要么经过重心,要么没经过重心,
没经过重心的递归解决,经过重心的,假设重心是x, 剩余的子树为x1, x2, ..., xn,假设目前求到经过
重心的共有k个点的路径的长度最长为len, 那么处理子树xi的节点vxi时候,一遍dfs子树xi可以求出vxi到
重心x的距离dis和总共的节点数totv,那么右端点为vxi的最长路径为xlen = dis + rec[k-totv].dis,其中
rec[i]记录x1..xi-1中的子树节点到重心经过的节点数为i的 最长距离 和 节点个数, 那么:
1. xlen < len 继续
2. xlen = len, 路径条数 += rec[k - totv].totv
3. xlen > len, len更新为xlen, 路径条数置为rec[k - totv].totv
然后用xi子树的节点信息更新rec数组, 处理xi+1
*/

#include<bits/stdc++.h>
const int maxn = 3e4 + 10;
const int INF = 1e9 + 10;
using namespace std;

typedef pair<int, int> P;
vector<P> G[maxn], g[maxn];
int n, m, T, vis[maxn], k;
int dis[maxn], sz[maxn], bel[maxn];
P operation[maxn], rec[maxn];

void dfs(int u, int fa, int c) {
    vis[u] = 1;
    if(fa) { g[u].push_back(P(fa, c)); g[fa].push_back(P(u, c)); }
    for(int i = 0; i < G[u].size(); i++) {
        int nxt = G[u][i].first, cost = G[u][i].second;
        if(dis[nxt] != dis[u] + cost || vis[nxt]) continue;
        dfs(nxt, u, cost);
    }
}

void dijkstra(int s) {
    for(int i = 0; i <= n; i++) { dis[i] = INF; vis[i] = 0; }
    priority_queue<P, vector<P>, greater<P> > que;
    dis[s] = 0; que.push(P(0, s));
    while(!que.empty()) {
        P p = que.top(); que.pop();
        int now = p.second, di = p.first;
        if(di > dis[now]) continue;
        for(int i = 0; i < G[now].size(); i++) {
            P e = G[now][i];
            int to = e.first, cost = e.second;
            if(dis[to] <= dis[now] + cost) continue;
            dis[to] = dis[now] + cost;
            que.push(P(dis[to], to));
        }
    }
    dfs(1, 0, 0);
    for(int i = 0; i <= n; i++) vis[i] = 0;
}

int calculate_size(int x, int fa) {
    sz[x] = 1;
    for(int i = 0; i < g[x].size(); i++) {
        int to = g[x][i].first;
        if(to == fa || vis[to]) continue;
        sz[x] += calculate_size(to, x);
    }
    return sz[x];
}

P find_zx(int x, int fa, int t) {
    P res(INF, -1); int m = 0;
    for(int i = 0; i < g[x].size(); i++) {
        int to = g[x][i].first;
        if(to == fa || vis[to]) continue;
        res = min(res, find_zx(to, x, t));
        m = max(m, sz[to]);
    }
    m = max(m, t - sz[x]);
    return min(res, P(m, x));
}

int max_step(int x, int fa, int tot, int dist, int flag, int &cnt) {
    rec[cnt] = P(0, 0); tot++; int step = tot;
    bel[cnt] = flag; operation[cnt++] = P(tot, dist);
    for(int i = 0; i < g[x].size(); i++) {
        int to = g[x][i].first, w = g[x][i].second;
        if(to == fa || vis[to]) continue;
        step = max(step, max_step(to, x, tot, dist + w, flag, cnt));
    }
    return step;
}

P solve(int x) {
    int tot_size = calculate_size(x, 0);
    int zx = find_zx(x, 0, tot_size).second;
    vis[zx] = 1; P ans(0, 0);
    for(int i = 0; i < g[zx].size(); i++) {
        int to = g[zx][i].first;
        if(vis[to]) continue;
        P res = solve(to);
        if(ans.first > res.first) continue;
        if(ans.first < res.first) ans = res;
        else ans.second += res.second;
    }
    int cnt = 1, step = 1, flag = 1;
    bel[cnt] = 0; rec[cnt] = P(0, 0); operation[cnt++] = P(1, 0);
    for(int i = 0; i < g[zx].size(); i++) {
        int to = g[zx][i].first, w = g[zx][i].second;
        if(vis[to]) continue;
        step = max(max_step(to, zx, 1, w, flag++, cnt), step);
    }
    rec[cnt] = P(0, 0);
    for(int from = 1, to = 1; from < cnt; ) {
        while(to < cnt && bel[to] == bel[from]) {
            P now = operation[to]; to++;
            int tot = now.first, val = now.second;
            int rv = k + 1 - tot;
            if(rv < 1 || rv > step) continue;
            P nxt = rec[rv];
            int totv = nxt.second, dist = nxt.first;
            if(dist + val < ans.first || !nxt.second) continue;
            if(dist + val == ans.first) ans.second += totv;
            else ans = P(dist + val, totv);
        }
        while(from < to) {
            P now = operation[from]; from++;
            int tot = now.first, val = now.second;
            if(tot > k || rec[tot].first > val) continue;
            if(rec[tot].first == val) rec[tot].second++;
            else rec[tot] = P(val, 1);
        }
    }
    vis[zx] = 0; return ans;
}

int main() {
    scanf("%d", &T);
    while(T--) {
        scanf("%d %d %d", &n, &m, &k);
        for(int i = 0; i < maxn; i++) { G[i].clear(); g[i].clear(); }
        while(m--) {
            int u, v, c; scanf("%d %d %d", &u, &v, &c);
            G[u].push_back(P(v, c));
            G[v].push_back(P(u, c));
        }
        for(int i = 1; i <= n; i++) sort(G[i].begin(), G[i].end());
        dijkstra(1);
        P ans = solve(1);
        printf("%d %d\n", ans.first, ans.second);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值