目录
1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):
仿真操作步骤可参考程序配套的操作视频。
2.算法涉及理论知识概要
256QAM 是一种高阶调制方式,星座图中有256个星座点,每个星座点对应 8 比特信息。传统的 256QAM 采用均匀分布。通过改变改变星座图不同位置符号出现的概率,让外圈星座点出现频率降低,有利于减小平均功率,相当于增加了最小欧氏距离,从而有更好的传输性能。这就是我们所说的概率星座整形(PCS)了。它究竟有什么好处呢?
1. 具有整形增益。
2. 有望达到更高的传输容量,显著提升频谱效率。
3. 传输速率可以灵活调整,以完美适配不同的传输信道。
4. 无须多种支持多种QAM映射,仅使用方形QAM调制,需调整整形系数
PCS的关键在于如何对均匀概率的输出映射成非均匀概率幅度分布,而且该概率分布还应该是最优的。理论上可以证明Maxwell-Boltzman分布对于方形QAM整形是最优的概率分布。概率星座整形一般使用如下的公式完成:
参数v为整形因子。在本课题中,将通过GA优化算法,搜索最佳的参数v,进一步提升概率整形后的系统性能。以 256QAM 的误码率(BER)作为适应度函数。误码率越低,表明该概率整形因子 对应的星座点概率分布越优。在实际计算时,可通过蒙特卡罗仿真来估计误码率。具体步骤为:依据当前的 计算每个星座点的发送概率,生成大量发送符号,经过加性高斯白噪声(AWGN)信道传输,接收符号并进行解调,统计错误比特数,进而计算误码率。
通过PSO算法,获得最优的参数v,以降低256QAM 的误码率。
3.MATLAB核心程序
......................................................................
for i=1:Iter
i
for j=1:Npeop
rng(i+j)
if func_obj(x1(j,:))<pbest1(j)
p1(j,:) = x1(j,:);%变量
pbest1(j) = func_obj(x1(j,:));
end
if pbest1(j)<gbest1
g1 = p1(j,:);%变量
gbest1 = pbest1(j);
end
v1(j,:) = 0.8*v1(j,:)+c1*rand*(p1(j,:)-x1(j,:))+c2*rand*(g1-x1(j,:));
x1(j,:) = x1(j,:)+v1(j,:);
for k=1:dims
if x1(j,k) >= tmps(2,k)
x1(j,k) = tmps(2,k);
end
if x1(j,k) <= tmps(1,k)
x1(j,k) = tmps(1,k);
end
end
for k=1:dims
if v1(j,k) >= tmps(2,k)/2
v1(j,k) = tmps(2,k)/2;
end
if v1(j,k) <= tmps(1,k)/2
v1(j,k) = tmps(1,k)/2;
end
end
end
gb1(i)=gbest1
end
figure;
plot(gb1,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('优化迭代次数');
ylabel('适应度值');
VV = g1;
save PSO_OPT.mat gb1 VV
0X_078m
4.完整算法代码文件获得
V