算法:动态规划——线性模型之小朋友过桥

题目:在一个夜黑风高的晚上,有n(n <= 50)个小朋友在桥的这边,现在他们需要过桥,但是由于桥很窄,每次只允许不大于两人通过,他们只有一个手电筒,所以每次过桥的两个人需要把手电筒带回来,i号小朋友过桥的时间为T[i],两个人过桥的总时间为二者中时间长者。问所有小朋友过桥的总时间最短是多少。

输入:

两行数据:第一行为小朋友个数n

                   第二行有n个数,用空格隔开,分别是每个小朋友过桥的时间。

输出:

一行数据:所有小朋友过桥花费的最少时间。


样例:

输入

4

1 2  5 10

输出

17


解题思路:

我们先将所有人按花费时间递增进行排序,假设前i个人过河花费的最少时间为opt[i],那么考虑前i-1个人过河的情况,即河这边还有1个人,河那边有i-1个人,并且这时候手电筒肯定在对岸,所以opt[i] = opt[i-1] + a[1] + a[i]        (让花费时间最少的人把手电筒送过来,然后和第i个人一起过河)
如果河这边还有两个人,一个是第i号,另外一个无所谓,河那边有i-2个人,并且手电筒肯定在对岸,所以opt[i] = opt[i-2] + a[1] + a[i] + 2*a[2]    (让花费时间最少的人把电筒送过来,然后第i个人和另外一个人一起过河,由于花费时间最少的人在这边,所以下一次送手电筒过来的一定是花费次少的,送过来后花费最少的和花费次少的一起过河,解决问题)
所以 opt[i] = min{opt[i-1] + a[1] + a[i] , opt[i-2] + a[1] + a[i] + 2*a[2] }

来看一组数据 四个人过桥花费的时间分别为 1 2 5 10

具体步骤是这样的:
第一步:1和2过去,花费时间2,然后1回来(花费时间1);
第二歩:3和4过去,花费时间10,然后2回来(花费时间2);
第三部:1和2过去,花费时间2,总耗时17。

代码:

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;

int main()
{
   int n;
	cin>>n;
	int *t = new int[n];
	for (int i=0;i<n;i++)
	{
		cin>>t[i];
	}
	sort(t,t+n);
	vector<int> vect(n);
	vect[0]=0;
	vect[1]=t[1];
	for (int i=2;i<n;i++)
	{
		vect[i] = min(vect[i-1]+t[0]+t[i],vect[i-2]+t[0]+t[i]+2*t[1]);
	}
	cout<<vect[n-1];

	return 0;
}





评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值