codeforces 738d sea battle

本文介绍了一个关于在一维矩形中放置船只的游戏问题。通过贪心算法解决如何最少次数命中船只的问题,并给出了详细的算法思路及实现代码。
题意
给定一个1*n的矩形,里面有a个长度为b的船,已知有k个格子为空,问至少还要打几个格子才能一定打到船。
思路
贪心。首先根据已知的格子将矩形分成几个连续段,每一段左右端点为l,r,长度为k,那么每段最多
能容纳k/b个船,剩余段所能容纳的最多船为所有段相加为tmp。每次打格子,最坏情况下我们只能排除b个格子没船,
即打在一个段的右端点以左第b个格子(或左往右)。所以只要当前tmp>a,我们就排除b个格子,tmp--。
代码
#include <stdio.h>
#include <string.h>
#include <queue>
#include <vector>
#include <algorithm>
using namespace std;
typedef struct node node;
struct node
{
    int size,l,r;
    bool operator < (const node &a) const{
        return size < a.size;
    }
};
vector <int>ans;
char str[201000];
int n,a,b,k;
int main(){
    scanf("%d%d%d%d",&n,&a,&b,&k);
    priority_queue <node > q;
    scanf("%s",str);
    str[n] = '1';
    str[n + 1] = '\0';
    int l = 0,r = 0,size = 0;
    int tmp = 0;
    ans.clear();
    for(int i = 0;str[i];i ++){
        if(size == 0){
            if(str[i] == '0'){
                l = i;
                size = 1;
            }
        }
        else{
            if(str[i] == '0') size ++;
            else{
                if(size != 0){
                    r = i - 1;
                    if(size < b){
                        size = 0;
                        continue;
                    }
                    if(size/b > a){
                        for(int i = 1;i <= size/b - a;i ++){
                            ans.push_back(r - b + 1);
                            r -= b;
                        }
                        size = r - l + 1;
                    }
                    //printf("%d %d %d\n",size,l,r );
                    q.push((node){size,l,r});
                    tmp += size/b;
                    size = 0;
                }
            }
        }
    }
    while(!q.empty() && tmp > a){
        node now = q.top();
        q.pop();
        now.r -= b;
        now.r ++;
        //printf("%d %d\n",now.size,now.r);
        ans.push_back(now.r);
        now.r --;
        now.size -= b;
        tmp --;
        if(now.size < b) continue;
        q.push(now);
    }
    node now = q.top();
    int mod = now.size%b;
    //printf("%d\n",mod );
    ans.push_back(now.r - mod);
    printf("%d\n",(int )ans.size() );
    for(int i = 0;i <ans.size();i ++){
        printf("%d%c",ans[i] + 1,i == ans.size() - 1?'\n':' ');
    }
    return 0;
}
### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值