Codeforces 699e LRU

本文详细介绍了 CodeForces 699E 题目 LRU 缓存问题的解决思路及算法实现过程。通过对问题的深入分析,提出了一种基于状态压缩动态规划的方法来求解每个视频最终仍留在缓存区内的概率。

codeforces 699e LRU

题目链接

题意
给你n个视屏和一个大小为k的缓存区,每次选取一个视屏询问,如果视屏不在缓存区中,则加入缓存区,如果缓存区中视屏超过k个,则删除最早询问的视屏。给你每个视屏被询问的概率,每个视屏被选取的概率独立,问在10^100询问后每个视屏仍在缓存区内的概率。
思路
考虑到只有最后仍在缓存区中的视屏只有k个,所以对结果有影响的只有最后k次选取。
即前10^100 - k次选取的所有可能取法都对最后的结果没影响,所以在他们所有取法的基础上取就行了。
也就是说从后往前取,每当取到一个没有出现过的就加入集合,直到取满k个。
假如取到了重复的视屏,对集合的个数变化没有影响,所以可以看做是把这次取视屏与之前某次取不同视屏的操作交换,因为操作是独立的,所以不影响结果。
换言之,不需要考虑重复取的情况,直接算每次不同的转移即可。剩下的直接状压dp即可。
代码
#include <string.h>
#include <stdio.h>
double p[22],d[(1<<20) + 10];
double ans[22];
int hmany(int a){
    int ret = 0;
    while(a){
        if(a%2) ret ++;
        a >>= 1;
    }
    return ret;
}
int n,k;
int main(){
    scanf("%d%d",&n,&k);
    int num = 0;
    for(int i = 1;i <= n;i ++) {
        scanf("%lf",&p[i]);
        if(p[i] == 0) num ++;
    }
    if(n - num < k) k = n - num;
    memset(d,0,sizeof(d));
    d[0] = 1.0;
    for(int i = 0;i <(1<< n);i ++){
        int tmp = i;
        double tmpp = 0.0;
        int tmpk = 0;
        for(int j = 1;j <= n;j ++){
            if(i & (1 << (j - 1))){
                tmpk ++;
            }
            else tmpp += p[j];
        }
        if(tmpk >= k) continue;
        for(int j = 1;j <= n;j ++){
            if(((1 << (j - 1)) & i )== 0){
                d[i | (1 << (j - 1))] += d[i] * (p[j]/tmpp);
            }
        }
    }
    memset(ans,0,sizeof(ans));
    for(int i = 0;i < (1 << n);i ++){
        if(hmany(i) != k) continue;
        for(int j = 1;j <= n;j ++){
            if((1 << (j - 1)) & i){
                ans[j] += d[i];
            }
        }
    }
    for(int i = 1;i <= n; i ++){
        printf("%.10lf\n",ans[i] );
    }
    return 0;
}
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值