BiFormer:基于双层路由注意力的视觉Transformer

本文提出了一种名为BiFormer的新视觉Transformer,它采用双层路由注意力(BRA)机制,实现了内容感知的动态稀疏模式。BRA通过粗粒度区域过滤无关键值对,然后在选定的路由区域中应用细粒度的token-to-token注意力,以降低计算复杂性和内存占用。BiFormer在多个计算机视觉任务中表现出色,包括图像分类、目标检测和语义分割,尤其是在计算效率和性能之间取得良好平衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

论文链接:https://arxiv.org/abs/2303.08810
代码链接:https://github.com/rayleizhu/BiFormer

作为视觉transformer的核心构建模块,注意力是捕捉长程依赖关系的强大工具。然而,这种能力是有代价的:它会带来巨大的计算负担和内存占用,因为要计算所有空间位置上的成对token交互。一系列工作试图通过将手工制作的和内容无关的稀疏性引入注意力来缓解这个问题,例如将注意力操作限制在局部窗口、轴向条纹或膨胀窗口内。与这些方法相比,本文提出了一种新的通过双层路由的动态稀疏注意力,以实现具有内容感知的更灵活的计算分配。具体来说,对于一个查询,首先在粗粒度的区域级别上过滤掉不相关的键值对,然后在剩余的候选区域(即路由区域)中应用细粒度的token-to-token attention。本文提供了所提出的双层路由注意力的一个简单而有效的实现,利用稀疏性来节省计算和内存,同时只涉及gpu友好的密集矩阵乘法。用所提出的双层路由注意力建立了一个新的通用视觉transformer,称为BiFormer。由于BiFormer以查询自适应的方式关注一小部分相关标记,而不会分散其他不相关标记的注意力,因此它具有良好的性能和较高的计算效率,特别是在密集预测任务中。在图像分类、目标检测和语义分割等计算机视觉任务中的经验结果验证了所设计的有效性。代码可以在https://githu

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值