【BZOJ4036】【HAOI2015】按位或(期望,FWT)

本文探讨了一道涉及按位或操作的概率题,通过定义状态概率及期望时间,利用FWT快速沃尔什-赫达曼变换求解最终答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

刚开始你有一个数字 0 0 ,每一秒钟你会随机选择一个[0,2n1]的数字,与你手上的数字进行或(c++,c的|,pascal的or)操作。选择数字 i i 的概率是p[i]。保证 0p[i]1p[i]=1 0 ≤ p [ i ] ≤ 1 , ∑ p [ i ] = 1 。问期望多少秒后,你手上的数字变成 2n1 2 n − 1


Solution

神仙题哇!

orzYMY

我们设 f(S) f ( S ) 表示变成状态 S S 的期望时间,pk(S)表示经过最多 k k 秒变成状态S的概率。
那么有: f(S)=k=1+k×(pk(S)pk1(S)) f ( S ) = ∑ k = 1 + ∞ k × ( p k ( S ) − p k − 1 ( S ) )

其实 pk(S) p k ( S ) 是将 p(S) p ( S ) k k 次后的值,我们设p(S)FWT后为 P(S) P ( S ) f(S) f ( S ) FWT后为 F(S) F ( S )
那么有:

F(S)=k=1+k×(Pk(S)Pk1(S))=k=1+k×Pk(S)=11P(S) F ( S ) = ∑ k = 1 + ∞ k × ( P k ( S ) − P k − 1 ( S ) ) = − ∑ k = 1 + ∞ k × P k ( S ) = − 1 1 − P ( S )

(注意特判:如果 P(S)=1 P ( S ) = 1 F(S)=0 F ( S ) = 0

得到了 F(S) F ( S ) 后,我们再IFWT回去即可。


Code

/************************************************
 * Au: Hany01
 * Date: Jul 6th, 2018
 * Prob: [BZOJ4036][HAOI2015] 按位或
 * Email: hany01@foxmail.com
 * Inst: Yali High School
************************************************/

#include<bits/stdc++.h>

using namespace std;

typedef long long LL;
typedef pair<int, int> PII;
#define File(a) freopen(a".in", "r", stdin), freopen(a".out", "w", stdout)
#define rep(i, j) for (register int i = 0, i##_end_ = (j); i < i##_end_; ++ i)
#define For(i, j, k) for (register int i = (j), i##_end_ = (k); i <= i##_end_; ++ i)
#define Fordown(i, j, k) for (register int i = (j), i##_end_ = (k); i >= i##_end_; -- i)
#define Set(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define x first
#define y second
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define ALL(a) (a).begin(), (a).end()
#define SZ(a) ((int)(a).size())
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define y1 wozenmezhemecaia

template <typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }

inline int read()
{
    register int _, __; register char c_;
    for (_ = 0, __ = 1, c_ = getchar(); c_ < '0' || c_ > '9'; c_ = getchar()) if (c_ == '-') __ = -1;
    for ( ; c_ >= '0' && c_ <= '9'; c_ = getchar()) _ = (_ << 1) + (_ << 3) + (c_ ^ 48);
    return _ * __;
}

const double eps = 1e-9;
const int maxn = 1 << 20;

int n, N;
double p[maxn];

inline int dcmp(double x) { if (fabs(x) < eps) return 0; return x > 0 ? 1 : -1; }

inline void FWT(double *a, int ty) {
    for (register int i = 2, p = 1; i <= N; p = i, i <<= 1)
        for (register int j = 0; j < N; j += i)
            rep(k, p) a[j + k + p] += a[j + k] * ty;
}

int main()
{
#ifdef hany01
    File("bzoj4036");
#endif

    n = read(), N = 1 << n;
    rep(i, N) scanf("%lf", &p[i]);
    FWT(p, 1);
    rep(i, N) p[i] = dcmp(p[i] - 1) ? -1 / (1 - p[i]) : 0;
    FWT(p, -1);
    if (dcmp(p[N - 1])) printf("%.8lf\n", p[N - 1]); else puts("INF");

    return 0;
}
//同是天涯沦落人,相逢何必曾相识!
//    -- 马致远《杂剧·江州司马青衫泪》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值