- 区域增长
区域增长(region growing)是指将成组的像素或区域发展成更大区域的过程。从种子点的集合开始,从这些点的区域增长是通过将与每个种子点有相似属性像强度、灰度级、纹理颜色等的相邻像素合并到此区域。
- 曲率
它根据点的曲率值对点进行排序。需要这样做是因为区域从曲率最小的点开始增长。这样做的原因是曲率最小的点位于平坦区域(从最平坦区域生长可以减少段的总数)。
- 法线夹角阈值,搜索当前种子点的邻域点,计算邻域点的法线与当前种子点的法线之间的夹角,小于阈值的邻域点加入到当前区域;
- 对于每个种子点,算法都会发现周边的所有近邻点。1)计算每个近邻点与当前种子点的法线角度差(reg.setSmoothnessThreshold),如果差值小于设置的阈值,则该近邻点被重点考虑,进行第二步测试;2)该近邻点通过了法线角度差检验,如果它的曲率小于我们设定的阈值(reg.setCurvatureThreshold),这个点就被添加到种子点集,即属于当前平面。
#include <pcl/io/pcd_io.h>
#include <pcl/features/normal_3d.h>
#include <pcl/segmentation/region_growing.h>
#include <pcl/visualization/cloud_viewer.h>
#include <vector>
#include <string>
#include <pcl/io/ply_io.h>
#include <atlstr.h>
using namespace std;
int main(int argc, char** argv)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPLYFile<pcl::PointXYZ>("house.ply", *cloud);
int KN_normal = 50;
float SmoothnessThreshold = 45, CurvatureThreshold = 20;
pcl::search