基于Transformers的自然语言处理入门【九】-Transformers解决抽取式问答
1 抽取式问答任务概念
给定一个问题和一段文本,从这段文本中找出能回答该问题的文本片段(span)。具体可详见下图:
2 数据预处理
在将数据喂入模型之前,我们需要对数据进行预处理。预处理的工具叫Tokenizer。Tokenizer首先对输入进行tokenize,然后将tokens转化为预模型中需要对应的token ID,再转化为模型需要的输入格式。
为了达到数据预处理的目的,我们使用AutoTokenizer.from_pretrained方法实例化我们的tokenizer,这样可以确保:
- 我们得到一个与预训练模型一一对应的tokenizer。
- 使用指定的模型checkpoint对应的tokenizer的时候,我们也下载了模型需要的词表库vocabulary,准确来说是tokens vocabulary。
现在我们还需要思考预训练机器问答模型们是如何处理非常长的文本的。一般来说预训练模型输入有最大长度要求,所以我们通常将超长的输入进行截断。但是,如果我们将问答数据三元组<question, context, answer>中的超长context截断,那么我们可能丢掉答案(因为我们是从context中抽取出一个小片段作为答案)。为了解决这个问题,下面的代码找到一个超过长度的例子,然后向您演示如何进行处理。我们把超长的输入切片为多个较短的输入,每个输入都要满足模型最大长度输入要求。由于答案可能存在与切片的地方&#