【51nod 1287 加农炮】 线段树

博客介绍了51nod1287问题的解法,以元素下标为节点存储高度值,每次找出大于等于当前高度的第一个高度的下标值,将该下标前一个数的高度加一,使用线段树维护,时间复杂度为O(nlogn+Qlogn)。

51nod1287
其实就是以他们的下标为节点存储他们的高度值
然后每次找大于等于他的第一个高度的下标值 把这个下标前面那个数高度加一
然后用线段树维护就行了
时间复杂度是是 O(nlogn+Qlogn)

/*
    if you can't see the repay
    Why not just work step by step
    rubbish is relaxed
    to ljq
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#include <vector>
#include <stdlib.h>
#include <algorithm>
using namespace std;

#define dbg(x) cout<<#x<<" = "<< (x)<< endl
#define dbg2(x1,x2) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<endl
#define dbg3(x1,x2,x3) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<" "<<#x3<<" = "<<x3<<endl
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
#define mid ((l+r)>>1)

typedef pair<int,int> pll;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll _INF = 0xc0c0c0c0c0c0c0c0;
const ll mod =  (int)1e9+7;

ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll ksm(ll a,ll b,ll mod){int ans=1;while(b){if(b&1) ans=(ans*a)%mod;a=(a*a)%mod;b>>=1;}return ans;}
ll inv2(ll a,ll mod){return ksm(a,mod-2,mod);}
void exgcd(ll a,ll b,ll &x,ll &y,ll &d){if(!b) {d = a;x = 1;y=0;}else{exgcd(b,a%b,y,x,d);y-=x*(a/b);}}//printf("%lld*a + %lld*b = %lld\n", x, y, d);

/*namespace sgt
{
    #define mid ((l+r)>>1)

    #undef mid
}*/
#define N 1000000
int Max(int a,int b){if(a>b) return a;return b;}
const int MAX_N = 50025;
int arr[MAX_N],q[MAX_N],maxx[MAX_N<<2];
void up(int rt)
{
    maxx[rt] = Max(maxx[rt<<1],maxx[rt<<1|1]);
}
void build(int rt,int l,int r)
{
    maxx[rt] = -1;
    if(l==r)
    {
        maxx[rt] = arr[l];
        return;
    }
    build(rt<<1,l,mid);
    build(rt<<1|1,mid+1,r);
    up(rt);
}
void update(int rt,int l,int r,int x)
{
    if(l==r)
    {
        maxx[rt]++;
        return ;
    }
    if(x<=mid) update(rt<<1,l,mid,x);
    else update(rt<<1|1,mid+1,r,x);
    up(rt);
}
int query(int rt,int l,int r,int x,int y,int v)
{
    if(maxx[rt]<v) return -1;
    if(l==r)
    {
        if(maxx[rt]>=v) return l;
        return -1;
    }
    int ans = -1;
    if(maxx[rt<<1]>=v&&x<=mid) ans = query(rt<<1,l,mid,x,y,v);
    if(ans==-1&&mid<y) ans = query(rt<<1|1,mid+1,r,x,y,v);
    return ans;
}
int query_(int rt,int l,int r,int x,int y)
{
    if(x<=l&&r<=y)
    {
        return maxx[rt];
    }
    if(x>mid) return query_(rt<<1|1,mid+1,r,x,y);
    else if(y<=mid) return query_(rt<<1,l,mid,x,y);
    else return Max(query_(rt<<1,l,mid,x,y),query_(rt<<1|1,mid+1,r,x,y));
}
void debug(int rt,int l,int r)
{
    if(l==r)
    {
        printf("%d\n",maxx[rt]);
        return ;
    }
    debug(rt<<1,l,mid);
    debug(rt<<1|1,mid+1,r);
}
int main()
{
    //ios::sync_with_stdio(false);
    //freopen("a.txt","r",stdin);
    //freopen("b.txt","w",stdout);
    int n,Q,d;
    scanf("%d%d",&n,&Q);
    for(int i = 1;i<=n;++i) scanf("%d",&arr[i]);
    build(1,1,n);
    while(Q--)
    {
        scanf("%d",&d);
        if(d>maxx[1]||d<=query_(1,1,n,1,1)) continue;
        int xb = query(1,1,n,1,n,d);
        update(1,1,n,xb-1);
    }
    debug(1,1,n);
    //fclose(stdin);
    //fclose(stdout);
    //cout << "time: " << (long long)clock() * 1000 / CLOCKS_PER_SEC << " ms" << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值