POJ 2533 Longest Ordered Subsequence

本文探讨了如何通过维护一个单调队列来解决寻找给定数列中最长严格单调上升子序列的问题,提供了时间复杂度为O(n*logn)的高效算法。详细解释了算法逻辑和实现步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://poj.org/problem?id=2533


                                                                                                                          Longest Ordered Subsequence
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 39104 Accepted: 17188

Description

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence ( a1, a2, ..., aN) be any sequence ( ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

题意:求一个严格单调上升子序列的最大长度

解题思路:维护一个单调的队列
新的元素,如果大于队尾元素,即插入队尾
否则二分查找比它大的最小元素,替换掉
最后队列长度即为LIS的解

复杂度分析: 时间复杂度:o(n*logn)
空间复杂度:o(n)


#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=10010;
int a[maxn],b[maxn];
int n;
int w(int *a,int x,int y,int t)
{
  int L=x,R=y,M=0;
  while(L<R)
  {
      M=((R-L)>>1)+L;
      if(a[M]<t) L=M+1;
      else R=M;
  }
  return L;
}
int main()
{
    while(cin>>n && n)
    {
        int t,c=1;
        cin>>b[0];
        for(int i=1;i<n;i++)
        {
            cin>>t;
            if(t>b[c-1]) b[c++]=t;
            else
                b[w(b,0,c,t)]=t;
        }
        cout << c << endl;
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值