UVA 264 - Count on Cantor

本文详细介绍了Georg Cantor的著名数学证明之一,即有理数集的可数性证明。通过直观的图表展示了一种具体的枚举方法,将有理数按特定顺序排列,并提供了实现此枚举方法的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

One of the famous proofs of modern mathematics is Georg Cantor's demonstration that the set of rational numbers is enumerable. The proof works by using an explicit enumeration of rational numbers as shown in the diagram below.

displaymath27

In the above diagram, the first term is 1/1, the second term is 1/2, the third term is 2/1, the fourth term is 3/1, the fifth term is 2/2, and so on.

Input and Output

You are to write a program that will read a list of numbers in the range from 1 to tex2html_wrap_inline29 and will print for each number the corresponding term in Cantor's enumeration as given below. No blank line should appear after the last number.

The input list contains a single number per line and will be terminated by end-of-file.

Sample input

3
14
7

Sample output

TERM 3 IS 2/1
TERM 14 IS 2/4
TERM 7 IS 1/4


Solution1:

#define RUN
#ifdef RUN

#include<stdio.h>


// 1:第i条斜线有i个元素
// 2:前i条斜线共有k*(k+1)/2个数
// 3:若存在最小正整数k使得S(k)>=n,
// 则n是第k条斜线上的倒数第S(k)-n+1个数,
// 对应的值是S(k)-n+1 / k-S(k)+n
int main() {

#ifndef ONLINE_JUDGE
	freopen("264.in", "r", stdin);
	freopen("264.out", "w", stdout); 
#endif

  long n;
  while(scanf("%ld", &n) == 1) {
    long k = 1, s = 0;
    for(;;) {
      s += k;
	  
	  // 找到了最小正整数k
      if(s >= n) {
		if(k&1){
			printf("TERM %ld IS %ld/%ld\n", n, s-n+1, k-s+n);
		}
		else{
			printf("TERM %ld IS %ld/%ld\n", n, k-s+n, s-n+1);
		}
        break;
      }
      k++;
    }
  }
  return 0;
}

#endif


Solution2:

//#define RUN
#ifdef RUN

#include<stdio.h>
#include<math.h>
int main() {

#ifndef ONLINE_JUDGE
	freopen("264.in", "r", stdin);
	freopen("264.out", "w", stdout); 
#endif

  long n;
  while(scanf("%ld", &n) == 1) {
    long k = (long)floor((sqrt(8.0*n+1)-1)/2-1e-9)+1;
    long s = k*(k+1)/2;

	if(k&1){
		printf("TERM %ld IS %ld/%ld\n", n, s-n+1, k-s+n);
	}
	else{
		printf("TERM %ld IS %ld/%ld\n", n, k-s+n, s-n+1);
	}



  }
  return 0;
}

#endif





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值